

機械学習を用いたデータ分析技術

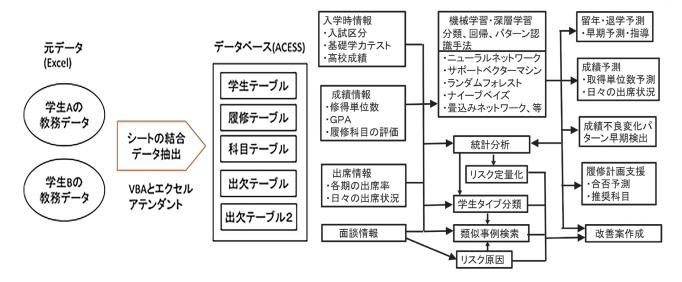
- 留年・退学者削減への取り組み

安部 恵介

研究シーズの紹介

AIやビッグデータの活用が注目を集めているが、機械学習はAIの基本となる技術であり、最適化手法の応用でもある。これまでの産業・社会への適用から、新たな応用分野として機械学習を用いたデータ分析技術に取り組んでいる。

学内における留年・退学者の削減を目的として、学内教務システムK'sLifeから得られる学生の履修、成績、出席等のデータを用いて、機械学習の適用により留年・退学者を早期に予


測・予防する方式を開発した。リアルタイムな出席状況から成績不良者を早期に検出することにより、速やかな対応・改善が可能となる。またこれらのデータ分析は個々の学生に適した履修計画の支援にも適用可能である。

企業においても大量のデータの活用は重要であり、今後本 技術の新たな適用を図りたい。

データマイニング技術 機械学習技術

- ★量のデータをデータベース化し、有用な情報や知見を発掘する。
- ★量のデータを学習することにより、新たな予測や判断を支援する。

期待される活用シーン

- ●留年・退学者を削減したい
- 留年・退学者を早期に予測し 予防したい
- ●そのための定量的指標

 \rightarrow

過去の多くの学生の実績を学習 することにより、成績・出席状況 等に応じた予測・対策が可能と なる。

$\rightarrow 1$	入学時		留年・退学	0.373	0.576	0.453
			正規卒業	0.826	0.675	0.743
	1年前期 終了時		留年・退学	0.676	0.8	0.733
			正規卒業	0.892	0.812	0.85
	1年終了時		留年·退学	0.725	0.78	0.752
			正規卒業	0.87	0.833	0.851
	2年前期		留年・退学	0.707	0.87	0.78
	終了時		正規卒業	0.937	0.843	0.887
	2年終了時		留年・退学	0.752	0.924	0.829
			正規卒業	0.964	0.870	0.915

- ●自分に適した履修科目がよく 分からない
- ●その結果単位を落とし成績不 良となる学生が多い

過去の多くの学生の履修・成 績実績を学習することにより、 個々の学生に適した履修計画を 支援する。

	余件	止解平	分類	再規率	週台平	F個
\rightarrow	標準	0.878	不合格	0.826	0.76	0.792
	データ		合格	0.898	0.93	0.914
	関連科目 追加	0.902	不合格	0.913	0.778	0.84
			合格	0.898	0.964	0.93
	出席日数 追加	0.015	不合格	0.87	0.833	0.851
		0.910	合格	0.932	0.948	0.94

最適化手法の産業・社会への応用:スマートハウスにおけるエネルギーコスト最小化等 スケジューリング技術:再配達を考慮した配送計画、大学の時間割作成、省エネ列車ダイヤ等