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Abstract
In this paper, a simple transformation is proposed for the fixed effects logit model, using which 
some valid moment conditions including the first-order condition for one of the conditional MLE 
proposed by Chamberlain (1980) can be generated. Some Monte Carlo experiments are carried out 
for the GMM estimator based on the transformation.
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1. Introduction
Chamberlain (1980) proposes an useful and established estimator for the fixed effects logit model in 
panel data. This estimator is referred to as the conditional logit estimator, which maximizes the 
likelihood function composed of the probabilities of the (binary) dependent variables conditional on 
the  fixed  effects,  the  (real-valued)  explanatory  variables  and  the  intertemporal  sums  of  the 
dependent variables. The conditional logit estimator is consistent for the situation of small number 
of time periods and large cross-sectional size, since its conditional likelihood function rules out the 
fixed effects.1

This paper advocates another method of consistently estimating the fixed effects logit model 
for the situation of small number of time periods and large cross-sectional size. The procedure of 
the method is as follows: Firstly, a hyperbolic transformation is applied to the fixed effects logit 
model  with  the  aim  of  eliminating  the  fixed  effects.  Next,  the  GMM  (generalized  method  of 
moments) estimator proposed by Hansen (1982) is constructed by using the moment conditions 
based on the hyperbolic transformation. It will be seen that these moment conditions include one 
type of the first-order conditions of the likelihood for the conditional logit estimator. Then, the 
preferable small sample property of the GMM estimator using the moment conditions based on the 
hyperbolic transformation is shown by some Monte Carlo experiments.

The rest of the paper is as follows. Section 2 presents the implicit form of the fixed effects logit 
model, the moment conditions based on the hyperbolic transformation and the GMM estimator. 
Section 3 illustrates the link between the conditional maximum likelihood estimator (CMLE) in the 
first paragraph and the GMM estimator for the case of two periods. Section 4 reports some Monte 
Carlo results for the GMM estimator. Section 5 concludes.

2. Fixed effects logit model, transformation and GMM estimator
In this section, the fixed effects logit model is implicitly defined, where the error term is of additive 
form.2 The hyperbolic transformation, which eliminates the fixed effects and then based on which 
the moment  conditions is constructed for estimating the model consistently, is the product of the 
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1 Additionally, Honoré and Kyriazidou (2000) propose an estimator for the fixed effects logit model with the lagged 
dependent variable.  As for details, see also p211-216 in Hsiao (2003).

2 The regression form defined implicitly is also used by Blundell et al. (2002) for count panel data .
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model  defined  implicitly.  The  GMM  estimator  is  defined  by  using  the  moment  conditions 
constructed. Through the paper, the subscripts i  and t  denotes the individual and time period 
respectively,  while  N  and  T  are  number  of  individuals  and  number  of  time  periods 
respectively. Since the short panel is supposed, it is assumed that N ∞  and T  is fixed. In 
addition, it is assumed that the variables in the model are independent among individuals.

The fixed effects logit model is able to be written in the implicit form as follows:

yit= pitvit , for t=1, , T , (2.1)

pit=exp iwit /1expiw it  , for t=1, , T , (2.2)

where the observable variables  yit  and  w it  are the binary dependent variable and the real-
valued explanatory variable respectively, while the unobservable variables i  and vit  are the 
individual fixed effect and the disturbance respectively.3 Equations (2.1) say that  yit  take one 
with probability  pit ,  while it  is seen from equations (2.2) that  the probability is the logistic 
cumulative  distribution  function  of  iwit .  Allowing  for  the  serially  uncorrelated 
disturbances, the uncorrelatedness between the disturbances and the fixed effect and the strictly 
exogenous explanatory variables, the assumptions on the disturbances are specified as

E [vit ∣ vi
t−1 ,i , w i

T ]=0 , for t=1, , T , (2.3)

where  vi
t−1=vi1 , , vi ,t−1  for  t=2, ,T , vi

0  is  defined  as  the  empty  set  for 

convenience and w i
T=w i1 , , w iT  . The assumptions (2.3) can be derived from the assumption 

underlying  the  fixed  effects  logit  model,  which  is  that  yit  for  t=1, , T  are  mutually 
independent conditional on i  and w i

T .4

From now on, based on the fixed effects logit model composed of (2.1) and (2.2) with (2.3), the 
moment  conditions  for  estimating    consistently  are  constructed  by  using  a  hyperbolic 
transformation, as stated below. Taking notice of the fact that

tanh i wit /2=2 pit−1 (2.4)

and using the formula that

tanh a−b= tanha−tanhb/1−tanha tanh b (2.5)

with a  and b  being any real numbers, it follows that

3 It is generally assumed that the individual effect  i  is correlated with the explanatory variables  w it  for 
each i .

4 If the underlying assumption holds,  f  y it∣yi
t−1 ,i , xi

T = f  yit∣i , xi
T = pit , where f ⋅∣⋅  is the 

conditional probability density function. Accordingly,  E [ y it∣yi
t−1 ,i , xi

T ]=E [ yit∣i , xi
T ]=p it . As for 

details, see p23 in Cameron and Trivedi (2005). Taking notice of (2.1) and the fact that  vit= yit−pit , the 
assumptions (2.3) are obtained.
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tanh  w it /2= pit−pi , t−1/ pit pi , t−1−2 pit pi ,t−1 , (2.6)

where    is  the first  differencing operator,  such as  w it=w it−wi , t−1 .  Since  pit  and 
pit pi , t−1  are written as

pit=E [ yit ∣vi
t−1 ,i , w i

T ] (2.7)

and

pit pi ,t−1=E [ yit yi , t−1∣ vi
t−1 ,i , wi

T ] − pit vi ,t−1 (2.8)

respectively by using (2.1) and (2.3), plugging (2.7) and (2.8) into (2.6) gives

 E [ yit ∣ vi
t−1 ,i ,wi

T ]E [ yi ,t−1∣ vi
t−2 ,i ,w i

T ]−2E [ yit yi , t−1∣ vi
t−1 ,i , wi

T ] − pit vi ,t−1  

× tanh  wit /2 = E [ yit ∣ vi
t−1 ,i , wi

T ]−E [ yi , t−1∣ vi
t−2 ,i ,wi

T ] .
(2.9)

Equations  (2.7)  and  (2.8)  are  obtained  by  plugging  (2.1)  into  E [ y it∣ v i
t−1 ,i , wi

T ]  and 

E [ yit yi , t−1∣ vi
t−1 ,i , wi

T ]  and then applying (2.3) to them. Taking the expectation conditional 

on vi
t−2 ,i , w i

T   for both sides of (2.9) and then applying law of iterated expectation and (2.3) 
dated t−1 , it follows that

E [  yit− yi , t−1 − tanh w it /2 yit yi , t−1−2 yit yi , t−1 ∣ vi
t−2 ,i , w i

T ] = 0 . (2.10)

Since   yit
n= yit  for any positive integer value  n  due to the property of binary variable, 

equation (2.10) results in

E [hit ∣ vi
t−2 ,i ,wi

T ] = 0 , for t=2, , T , (2.11)

where

hit = yit − tanh  w it /2 yit
2

. (2.12)

The transformation (2.12) is referred to as “the hyperbolic tangent differencing transformation” for 
the fixed effects logit model in this paper and hereafter abbreviated to “the HTD transformation”. It 
should be noted that as seen from (2.11) and (2.12), observations for which yit= yi , t−1=0  and 

yit= y i , t−1=1  make no direct  contribution to  obtaining the estimates of    based on the 
moment conditions (2.11), since hit   is invariably zero for these observations.

The conditional moment conditions (2.11) give the following m×1  vector of unconditional 
moment conditions:

E [ z i ' hi ] = 0 , (2.13)

3



where  hi=[hi2 ⋯ hiT ] '  is the  T−1×1  vector and  zi=diag [  zi2' ⋯  ziT ' ]  

is  the T−1×m  matrix with m=∑t=2
T

mt . The (transposed) blocks

zit= f tvi
t−2 ,i ,w i

T  , for t=2, , T (2.14)

are the mt×1  vector-valued functions of vi
t−2 , i  and w i

T  at time t , where mt  is 
number of instruments for time t . By using the empirical counterpart of (2.13):

g N =1/ N ∑i=1
N

 zi ' hi  (2.15)

and the m×m  inverse of optimal weighting matrix:

W N  1 =1/ N ∑i=1
N

 zi  ' hi 
1 hi

1 ' zi , (2.16)

where  1  is  any initial  consistent  estimator  for   ,  the GMM estimator  is  constructed as 
follows:

GMM =arg min


g N ' W N  1
−1 g N  , (2.17)

where N 1/2  GMM −0   converges in distribution to the normal distribution as follows:

N 1/2  GMM −0 
d N 0,  D 0 ' W 0 −1 D 0 −1  (2.18)

with  0  being the true value of   . Taking notice of the assumption that the variables are 
independent among individuals, W 0  , which is the (asymptotic) variance-covariance matrix of 
the moment conditions (2.13), can be written by using 0  as follows:

W 0 =E [ zi' hi 0  hi 0' zi ] , (2.19)

where it should be noted that (2.16) is the empirical counterpart of (2.19) if  1  is replaced by 
0  and N 1 /2g N 0 

d N 0,W 0 . Further, the first derivative of (2.13) with respect to 
  for 0  is as follows:

D 0=∂ E [  zi ' hi ] / ∂∣=0 . (2.20)

It  is  conceivable that  inferences for the GMM estimator based on the HTD transformation 
could  be  permitted  to  be  conducted  on  the  basis  of  numbers  of  observations  for  which 

 yit 
2=1  instead  of  N ,  on  the  grounds  that  observations  except  for  those  for  which 

 yit 
2=1  make  no  direct  contribution  to  estimating   .  In  this  case, 
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M =1/T−1∑i=2
T

M t  is expediently used for the inferences instead of N , where M t  

is number of observations for which  yit 
2=1  at time t .

3. Link between CMLE and GMM estimator
The discussion here is conducted for the case of two periods (i.e. t−1  and t ). It is shown in 
this section that the GMM estimator opting for an instrument is identical to the CMLE in this case.

First, the GMM estimator is presented. With hi =hit   and zi=zit=wit /2 (both of 
which are scalar), equation (2.13) turns to

E [ wit / 2 hit ] = 0 . (3.1)

The  moment  condition  (3.1)  says  that  w it /2  is  used  as  the  instrument  for  the  HTD 
transformation hit  . The GMM estimator for   is the just-identified one when using only 
the moment condition (3.1) for the two periods. This is denoted by GMM

∗  hereafter.
The first derivative with respect to   and square of hit   are respectively calculated as 

follows:

∂ hit /∂ = − yit
2  wit /2 sech2 wit /2 (3.2)

and

hit 2= yit 
2 − 2 tanh wit /2 yit   tanh2 w it /2 yit 

2

= yit
2 sech2 wit /2 − 2 tanh wit /2 hit 

, (3.3)

where the relationship that  yit 
n= yit 

2  if  n  is even and   yit 
n= yit  if  n  is 

odd is used since yit  is binary. Using (2.19), (2.20), (3.2) and (3.3), W 0  and D 0  for 
(3.1) are respectively calculated as follows:

W∗0=E [ hit 0
2 w it /22 ]

=1/ 4E [ yit 
2 wit 

2sech2 0w it /2]
, (3.4)

where the relationship E [ tanh wit /2 hit 0  wit 
2 ]=0  obtained from (2.11) is used and

D∗0= E [w it /2 ∂ hit /∂∣=0
]

=−1/4 E [ yit 
2 wit 

2sech2 0 wit /2]
 . (3.5)

Looking at (3.4) and (3.5), it can be seen that

W∗0=−D∗0 . (3.6)

In addition, the relationship (2.18) is also applicable to the just-identified estimator (see p486-487 
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in Hayashi, 2000). Therefore, it follows from (2.18) and (3.6) that the following relationship holds 
for GMM

∗ :

N 1/2  GMM
∗ −0 

d N  0, −1/ D∗0   . (3.7)

Lee (2002,  p84-87)  elucidates the equality conceptually identical  to  (3.6)  in  the context  of  the 
CMLE to be hereafter described.

Next,  the  conventional  CMLE  proposed  by  Chamberlain  (1980)  is  presented  for  the  two 
periods as follows:

CML
∗ =arg max


L  , (3.8)

where  L =∑i=1
N

lit  .  Referring  to  Wooldridge  (2002,  p490-492),  the  logarithm  of 
probability composing the conditional log-likelihood function for the two-periods fixed effects logit 
model is written as follows, with it =expw it/ 1expw it  :

l it =it  it ln it   1−it  ln 1−it   , (3.9)

where it=1  if yi ,t−1 yit=1  and it=0  otherwise, while it=1  if yi ,t−1=0  and 
yit=1  and  it=0  if  yi ,t−1=1  and  yit=0 .  In  (3.9),  it   stands  for  the 

probability with which  yit  takes one given  w i ,t−1  ,  w it ,  i  and  yi ,t−1 yit=1 , 
while 1−it   stands for the probability with which yit  takes zero given w i ,t−1  , w it
, i  and yi ,t−1 yit=1 .

The first-order condition of L   is 

∂ L/∂=∑i=1
N

∂ l it /∂=0 (3.10)

with

∂ lit /∂=it wit  it 1−it  − 1−it it   . (3.11)

It is corroborated from (3.10) with (3.11) that the first-order condition of L  divided by N  
is the empirical counterpart of the moment condition (3.1) for the GMM estimator. The second-
order derivative of L   with respect to   is written as

∂2 L /∂ 2=∑i=1
N

−it w it 
2 it 1−it  . (3.12)

Taking notice of the fact that sech2 wit /2=4it 1− , it is evident that if   is 
replaced by 0 , (3.12) divided by N  is the empirical counterpart of (3.5) and  accordingly 
identical to −W ∗0   from (3.6). Therefore, the following relationship holds for CML

∗ :

N 1/2  CML
∗ −0  

d N  0, −1/ D∗0  . (3.13)
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Judging from the above, it is ascertained that for the two periods the conventional CMLE for 
the  fixed  effects  logit  model  is  identical  to  the  GMM  estimator  selecting  w it /2  as  the 
instrument for the HTD transformation.

To make doubly sure, the integration of wit /2 hit   with respect to   is conducted:

∫ wit /2hit d  = w it /2 yit −  yit 
2 ln cosh w it /2  C , (3.14)

where C  is the constant of integration. With C=− yit 
2 ln 2  for (3.14), the logarithm of 

probability (3.9) (which composes the conditional log-likelihood function for the two-periods fixed 
effects logit model) is compactly rewritten as

l it  = w it /2 yit −  yit 
2 ln 2cosh  wit /2 . (3.15)

The exponential of l it   in (3.15) (which is equivalent to (3.9)) represents the probability 
density when the restriction   yit 

2=1  is imposed. In this case, number of observations for 

which   yit 
2=1  is  used  instead  of  N  in  this  section  and therefore  CML

∗  (which  is 

equivalent to GMM
∗ ) could be interpreted as being the asymptotically efficient estimator. This is 

because the Cramér-Rao inequality is applicable in this case.
Incidentally,  Abrevaya  (1997)  shows that  for  the fixed  effects  logit  model  a  scale-adjusted 

ordinary maximum likelihood estimator is equivalent to the CMLE  for the case of two periods.

4. Monte Carlo
In  this  section,  some  Monte  Carlo  experiments  are  conducted  to  investigate  the  small  sample 
performance of the GMM estimator for the fixed effects logit model described in section 2. The 
experiments are  implemented by using an econometric  software TSP version 4.5 (see Hall  and 
Cummins, 2006).

The data generating process (DGP) is as follows:

yit={1 if pituit
0 otherwise

,

pit=exp iwit /1expiw it  ,

uit~U0,1 ,

w it= w i ,t−1iit ,

w i1=1 /1− i1/1−21/2i1 ,

i~N 0,
2  ; it~N 0,

2  .

In the DGP, values are set to the parameters  ,  ,  , 
2  and 

2 . The experiments 
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are carried out with the cross-sectional sizes N =100 , 500  and 1000 , the numbers of time 
periods T=4  and 8  and the number of replications TR=1000 .

In the experiments, the GMM estimator based on the HTD transformation selects w it  as 
the instruments for the transformation hit  . That is, the GMM(HTD) estimator uses the vector 
of moment conditions (2.13) with zit=wit , which is able to be written piecewise as follows: 

E [w it hit ] = 0 , for t=2, ,T . (4.1)

As a control, another GMM estimator is used, which employs the following moment conditions 
disregarding the unobservable heterogeneity:

E [w it it ] = 0 , for t=1, , T , (4.2)

where  it =exp w it/ 1exp  wit  . The GMM(LgtLev) estimator (i.e. the level GMM 
estimator for the logit model) for   is inconsistent due to the ignorance of the fixed effects.

The Monte Carlo results are exhibited in Table 1. The settings of values of the parameters for 
the explanatory variables w it  are the same as those used by Blundell et al. (2002) for count panel 
data model. The small sample property of the GMM (HTD) estimator can be said to be preferable 
and  their  bias  and  rmse  (root  mean  squared  error)  decrease  as  the  cross-sectional  size  N  
increases, which is the reflection of the consistency. In contrast,  the sizable downward bias and 
rmse for the (inconsistent) GMM(LgtLev) estimator remain at virtually constant levels when N  
increases.  As  is  seen  from  comparison  between  Simulations  (a)  and  (b)  for  the  GMM(HTD) 
estimator, the small sample performance of the GMM(HTD) estimator is better off for T=8  than 
for T=4 , reflecting the substantive increase of sample size. Further, the results of Simulations 
(b), (c) and (d) for the GMM(HTD) estimator raise the possibility that more persistent series of the 
explanatory  variables  might  bring  about  more  deteriorated  small  sample  performance  of   the 
GMM(HTD) estimator.5

5. Conclusion
This paper proposed the hyperbolic tangent differencing (HTD) transformation for the fixed effects 
logit model, with the intention of ruling out the fixed effects. The consistent GMM estimator was 
constructed by using the HTD transformation. Then, the equivalence of the GMM estimator opting 
for an instrument and the CMLE proposed by Chamberlain (1980) was revealed for the case of two 
periods. In addition, the Monte Carlo experiments indicated the desirable small sample property of 
the GMM estimator based on the HTD transformation.
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Table 1. Monte Carlo results for the fixed effects logit model

Notes:
The parameter settongs in the DGP are as follows:
Simulations (a) and (b): =0.5 ; =0.5 ; =0.1 ; 

2 =0.5 ; 
2=0.5 .

Simulation (c): =1 ; =0.9 ; =0 ; 
2 =0.5 ; 

2=0.05 .

Simulation (d): =1 ; =0.95 ; =0 ; 
2 =0.5 ; 

2=0.015 .
No non-convergence is found in all replications.
In each GMM estimation, the initial consistent estimate is obtained by using the inverse of cross-
sectional  average of the products  between the instruments matrix as the non-optimal weighting 
matrix.
The values of the Monte Carlo statistics are obtained using the true values of   as the starting 
values in the optimization for each replication. The values of the statistics obtained using the true 
values are not much different from those obtained using two different types of the starting values.

9

N=100 N=500 N=1000

bias bias bias

Simulation (a): T=4

GMM(HTD) 0.08 0.29 0.02 0.11 0.01 0.08

-0.50 0.53 -0.50 0.50 -0.50 0.50

Simulation (b): T=8

GMM(HTD) 0.06 0.19 0.02 0.08 0.01 0.05

-0.50 0.52 -0.50 0.51 -0.50 0.50

Simulation (c): T=8

GMM(HTD) 0.10 0.58 0.03 0.25 0.02 0.17

-1.00 1.08 -1.01 1.02 -1.01 1.01

Simulation (d): T=8

GMM(HTD) 0.09 1.04 0.02 0.43 0.02 0.31

-1.00 1.16 -1.01 1.03 -1.01 1.02

rmse rmse rmse

δ

GMM(LgtLev) δ

δ

GMM(LgtLev) δ

δ

GMM(LgtLev) δ

δ

GMM(LgtLev) δ


