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Abstract
This  paper  proposes  some  moment  conditions  associated  with  an  appropriate  specification  of 
negative binomial model for count panel data, which is proposed by Hausman et al. (1984). The 
newly proposed moment conditions enable researchers to conduct the consistent estimation of the 
model under much weaker assumptions than those configured by Hausman et al. (1984). In some 
Monte Carlo experiments, it is shown that the GMM estimators using the new moment conditions 
perform well in the DGP configurations conforming to the specification above.
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1. Introduction
It is often said that for count data the variance exceeds the mean (see Cameron and Trivedi, 2005, 
etc). For count panel data model with fixed effects when number of cross-sectional units is large 
and  number  of  time  periods  is  small,  Hausman  et  al.  (1984)  propose  a  specification  of  the 
overdispersion  based  on  the  negative  binomial  model  and  an  estimator  for  it.  However,  their 
estimator, which employs the conditional maximum likelihood approach, is not consistent when the 
explanatory variables are predetermined and/or the model is dynamic. In count panel data model, it 
is much admissible to regard the explanatory variables as being predetermined instead of being 
strictly exogenous and presumably much preferable to incorporate dynamics into the model. To take 
as an example a patent production function of a firm where number of patents as a flow variable is a 
function of R&D expenditures, it is conceivable that the current number of patents affects the future 
R&D expenditures as well as the current and past R&D expenditures affect the current number of 
patents. In addition, it is quite likely that the past numbers of patents affect the current number of 
patents.

For  the case  of  allowing for  the  predetermined explanatory variables  and the dynamics,  the 
distribution-free GMM (generalized method of moments) estimators proposed by Hansen (1982) 
are  exclusively  utilized  by  using  the  moment  conditions  proposed  by  Chamberlain  (1992), 
Wooldridge (1997), Windmeijer (2000), Blundell et al. (2002) and Kitazawa (2007) for the purpose 
of consistent estimations, except for the case where the pre-sample mean (PSM) estimator proposed 
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by Blundell et al. (1999,2002) is usable.1 However, no moment condition is developed which gives 
the overdispersion a distinction, although the moment conditions associated with the equidispersion 
are developed by Kitazawa (2007, 2009).

In this paper, some moment conditions are proposed in association with a specification of the 
overdispersion  for  the  count  panel  data  model.  The  specification  is  based  on  the  fixed  effects 
negative binomial model proposed by Hausman et al. (1984) and allows for the dynamics and the 
predetermined explanatory variables in the model.2 The moment conditions are constructed by using 
the  implicit  operation  proposed  by  Kitazawa  (2007)  and  are  of  the  form of  the  cross-linkage 
moment  conditions  setting  up  the  relationships  between  variances  and  covariances  in  the 
disturbances in the model.3

Some Monte Carlo experiments are carried out for both configurations of the equidispersion and 
the  overdispersion.  The  experiments  show  that  for  the  larger  cross-sectional  size,  the  GMM 
estimators incorporating the cross-linkage moment conditions associated with the overdispersion 
never perform better and remain biased for the configuration of the equidisperion, reflecting the 
inconsistency, while they perform better for the configuration of the overdispersion,  reflecting the 
consistency  and  that  the  usage  of  the  cross-linkage  moment  conditions  associated  with  the 
overdispersion  improve  or  do  not  at  least  vitiate  the  small  sample  performances  for  the 
configuration of the overdispersion.

The rest of the paper is organized as follows. In section 2, the cross-linkage moment conditions 
are proposed with respect to the overdispersion. In section 3, some Monte Carlo experiments are 
carried out. Section 4 concludes.

2. Model, moment conditions and GMM estimators
In  this  section,  some  sets  of  the  moment  conditions  associated  with  the  overdispersion  in  the 
framework of Hausman et al. (1984) for the linear feedback model (LFM) proposed by Blundell et 
al.  (2002)  in  count  panel  data  are  proposed  for  the  three  cases:  the  case  of   predetermined 
explanatory variables, the case of strictly exogenous explanatory variables and the case of mean-
stationary dependent  variables.  The method of  deriving  these sets  is  that  based on the  implicit 
operation  proposed by Kitazawa (2007)  and the moment  conditions  proposed in  this  paper  are 
constructed  in  the  framework  of  the  cross-linkage  moment  conditions  proposed  by  Kitazawa 
(2009).4 Then, the GMM estimators are constructed by using the cross-linkage moment conditions.

2.1. Linear feedback model
A simple form of the linear feedback model (LFM) proposed by Blundell et al. (2002) is as follows:

yit= yi , t−1exp  xitivit , for t=2, , T , (2.1.1)

where the  subscript  i  denotes  the  individual  unit  with  i=1, , N ,  t  denotes  the  time 
period and it is assumed that T  is fixed and N ∞ . The count dependent variable yit  is 
able to have zero or positive integer values and the explanatory variable xit  is able to have the 
real number. The unobservable variables i  and vit  are the individual specific effect and the 

1 For the case of allowing for the  strictly exogenous  explanatory variables and the dynamics, the distribution-free 
GMM estimators are also available by using the moment conditions proposed by Crépon and Duguet (1997) for the 
purpose of consistent estimations (see Kitazawa, 2007).

2 The fixed effects negative binomial model is described in Winkelmann (2008) in a way easy to understand.
3 The cross-linkage moment conditions are proposed by Kitazawa (2009), associated with the equidispersion.
4 Ahn (1990) and Ahn and Schmidt (1995) propose the method of  constructing the efficient  set  of  the moment 

conditions based on the error components in the framework of ordinary dynamic panel data model. The implicit 
operation is developed with the aim of incorporating their method into the count panel data model. 
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disturbance respectively. The parameters of interest are   (with ∣∣1 ) and  .
Equation (2.1.1)  is rewritten as follows:

yit= yi , t−1uit , for t=2, , T , (2.1.2)

uit=iitvit , for t=2, , T , (2.1.3)

where  i=exp i  and  it=exp  xit .  Based  on  (2.1.2),  it  can  be  seen  that  uit  is 
observable  in  the  sense  that  it  is  written  in  terms  of  data  and  parameter.  That  is, 

uit= yit− yi , t−1 , which is plugged into the moment conditions to be hereafter described.

2.2. Case of predetermined explanatory variables
In this case, the assumption on the disturbance vit  is

E [vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0 , for t=2, , T , (2.2.1)

where vi
t−1=vi1 , , vi , t−1  and xi

t=xi1 , , xit  . The assumption (2.2.1) is referred to as 
the “original assumption” for the case of predetermined explanatory variables.  Kitazawa (2007) 
constructs the implicit standard assumptions from the original assumption (2.2.1) as follows:

E [ yi1 vit ∣ yi1 ,i , vi
t−1 , x i

t ]=0 , (2.2.2)

E [vis vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0 , for 2≤s≤t−1 , (2.2.3)

E [ xis vit ∣ yi1 ,i , vi
t−1 , x i

t ]=0 , for 1≤s≤t , (2.2.4)

E [i vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0 . (2.2.5)

Here, the following assumption with respect to the overdispersion specified in the framework of 
Hausman et al. (1984) is imposed in addition to the implicit standard  assumptions (2.2.2) – (2.2.5):

E [ vit
2 − 1i yit ∣ yi1 ,i , vi

t−1 , xi
t ]=0 , for t=2, ,T , (2.2.6)

where the construction of (2.2.6) is written in Appendix A.
Kitazawa  (2007,  2009)  obtains  some  moment  conditions  for  estimating    and    

consistently  under  the  assumptions  (2.2.2)  –  (2.2.5)  and  the  assumption  of  the  equidispersion 
instead  of  (2.2.6).  In  this  paper,  the  moment  conditions  associated  with the overdispersion are 
constructed  under  the  assumptions  (2.2.2)  –  (2.2.5)  and  the  assumption  (2.2.6).5 The  implicit 
operation proposed by Kitazawa (2007) is used for constructing the moment conditions.

According to Kitazawa (2007), the observable analogues for (2.2.2) – (2.2.4) are obtained by 
replacing the unobservable variables vit  by the observable variables uit :

5 That is, the cross-linkage moment conditions associated with the overdispersion are obtained under the assumption 
(2.2.1) with (2.2.6).
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E [ yi1 uit ∣ yi1 ,i , vi
t−1 , xi

t ]= yi1iit , (2.2.7)

E [uisuit ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2isitvisiit , for 2≤s≤t−1 , (2.2.8)

E [ xis uit ∣ yi1 ,i , vi
t−1 , xi

t ]=xisiit , for 1≤s≤t , (2.2.9)

respectively.  In  addition,  the  observable  analogues  for  (2.2.6)  are  obtained  by  replacing  the 
unobservable  variables  vit  by  the  observable  variables  uit  and  further  replacing  the 
unobservable variables i yit  by the observable variables  yit uit−uit

2 /it :

E [ u it
2− yit   1/it u it

2− yit u it   ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2it it1 ,

for t=2, ,T , (2.2.10)

where the derivation of (2.2.10) is described in Appendix B.
When the explanatory variables are predetermined, the condensed full set of moment conditions 

associated with the overdispersion is obtained in the framework of constructing that associated with 
the  equidispersion.  Kitazawa  (2009)  constructs  a  condensed  full  set  of  moment  conditions 
associated  with  the  equidispersion.  It  is  derived  from  both  of  the  relationships  between 

yi1 ui , t−1  and  yi1 uit  for  t=3, , T  and  the  relationships  between  uis ui , t−1  and 
uis uit  for s=2, , t−2  and t=4, ,T , both of the relationships between u i ,t−1

2  and 
ui ,t−1uit  for  t=3, , T  and  the  relationships  between  ui ,t−1uit  and  uit

2  for 
t=3, , T , and the relationships between  xis ui ,t−1  and  xis uit  for  s=1, , t−1  and 
t=3, , T , all of which are solved through the intermediary of the unconditional expectation 

operator after weighting them with appropriate transformations of explanatory variables xit  for 
t=1, , T . The same relationships are used for deriving the full set of moment conditions for the 

case of the overdispersion as for the case of the equidispersion.
From the relationships between yi1 ui , t−1  and yi1 uit  for  t=3, , T , the relationships 

between  uis ui , t−1  and  uis uit  for  s=2, , t−2  and  t=4, ,T  and the relationships 
between  xis ui ,t−1  and  xis uit  for  s=1, , t−1  and  t=3, , T ,  Kitazawa  (2007) 
obtains  the  following  T−2T −1/2  and  T−1T / 2−1  quasi-differenced  moment 
conditions based on the transformation proposed by Chamberlain (1992) and Wooldridge (1997):

E [ yisi ,t−1/ituit−ui ,t−1]=0 , for s=1, , t−2 ; t=3, , T , (2.2.11)

E [ xisi , t−1/it u it−ui , t−1]=0 , for s=1, , t−1 ; t=3, , T , (2.2.12)

where the quasi-differenced moment conditions (2.2.11) are those extended as the application to the 
LFM in Blundell  et  al.  (2002).  The  moment  conditions  (2.2.11)  and (2.2.12)  hold  even if  the 
assumption (2.2.6) is not imposed.

The  moment  conditions  based  on  the  relationships  between  u i ,t−1
2  and  ui ,t−1 uit  for 

t=3, , T  and the relationships between ui ,t−1uit  and uit
2  for t=3, , T  are referred 

to  as  the  cross-linkage  moment  conditions,  according  to  Kitazawa  (2009).  For  the  case  of  the 
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equidispersion and predetermined explanatory variables, Kitazawa (2009) derives the cross-linkage 
moment conditions. From now on, two types of the cross-linkage moment conditions are solved for 
the case of the overdispersion and predetermined explanatory variables by using the relationships 
between u i ,t−1

2  and  u i ,t−1 uit  for  t=3, , T  and the relationships between ui ,t−1uit  

and u it
2  for t=3, , T .

First,  the  relationship  is  solved  between  the  transformation  using  u i ,t−1
2  (i.e. 

ui ,t−1
2 − yi , t−1  1/i ,t−1u i , t−1

2 − yi ,t−1u i , t−1 )  and  u i ,t−1 uit  (weighted  with 
i , t−11/it ),  through  the  intermediary  of  the  unconditional  expectation  operator. 

Multiplying both sides of (2.2.8) for s=t−1  by i , t−11/it  gives

E [ui ,t−1 i ,t−11/it uit ∣ y i1 ,i , vi
t−1 , xi

t ]=i
2i ,t−1 i ,t−11vi ,t−1ii ,t−11 .

(2.2.13)

Applying the law of total expectation to (2.2.10) dated t−1  and (2.2.13), it follows that

E [ ui , t−1
2 − yi , t−11/i , t−1ui , t−1

2 − yi , t−1u i , t−1 ]=E [i
2 i , t−1 i , t−11] ,

(2.2.14)

E [ui ,t−1 i , t−11/itu it ]=E [i
2i ,t−1 i ,t−11] . (2.2.15)

Subtracting (2.2.14) from (2.2.15) gives

E [ui ,t−1 i , t−1/it uit−ui , t−1]  E [ yi , t−1]

 E [ui , t−1 1/ituit−1 /i , t−1ui , t−1]  E [ yi , t−11/i , t−1ui , t−1]=0 ,

(2.2.16)

At this stage, it should be noted that the following two relationships hold under the assumptions 
(2.2.1):

E [ui ,t−1 i , t−1/it uit−ui , t−1]=E [ yi , t−1i ,t−1 /it uit−u i ,t−1] , (2.2.17)

E [ui ,t−1 1 /it uit−1/i ,t−1ui ,t−1]=E [ yi ,t−1 1/it uit−1/i , t−1ui ,t−1] ,

(2.2.18)

whose derivations  are  written  in  Appendix  C.  Accordingly,  plugging (2.2.17) and (2.2.18) into 
(2.2.16) gives the following T−2  cross-linkage moment conditions:

E [ yi ,t−1  i , t−11/it uit−ui , t−1−1 ]=0 , for t=3, , T , (2.2.19)

in which the order reduction with respect to   is realized, compared to (2.2.16).
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Next,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 
solved  between  u i ,t−1 uit  (weighted  with  1/it )  and  the  transformation  of  u it

2  (i.e. 

uit
2− yit   1/it u it

2− yit uit   weighted with i ,t−1 /it it1 ). Multiplying (2.2.8) for 
s=t−1  by 1/it  gives

E [ui ,t−1 uit 1 /it ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2i ,t−1vi ,t−1i (2.2.20)

and multiplying (2.2.10) by i ,t−1 /it it1  gives

E [ u it
2− yit  i ,t−1 /it it1   ∣ yi1 ,i , vi

t−1 , xi
t ]

 E [ 1 /it uit
2− yit uit  i ,t−1 /it it1   ∣ yi1 ,i , vi

t−1 , xi
t ] = i

2i , t−1

.

(2.2.21)

Applying the law of total expectation to (2.2.20) and (2.2.21), it follows that

E [ui ,t−1 uit 1 /it ]=E [i
2i ,t−1 ] , (2.2.22)

E [ uit
2− yit  i ,t−1 /it it1  ]

 E [ 1 /it uit
2− yit uit  i ,t−1 /it it1  ] = E [i

2i , t−1]
. (2.2.23)

Subtracting  (2.2.22) from (2.2.23),  the following  T−2  cross-linkage  moment  conditions  are 
obtained:

E [1/it  i , t−1/ituit−ui ,t−1u it − yit i ,t−1 /it uit  yit i , t−1/ it1uit−1 ]=0 ,

for t=3, , T . (2.2.24)

The detail of derivation of (2.2.24) is written in Appendix D.
Eventually,  a condensed full set of the moment conditions for the case where the assumption 

with  respect  to  the  overdispersion  is  imposed  in  addition  to  the  implicit  standard  assumptions 
associated with predetermined explanatory variables is composed of (2.2.11), (2.2.19), (2.2.24) and 
(2.2.12). That is, under the assumption (2.2.1) with (2.2.6), the condensed full set is composed of 
the moment conditions (2.2.11), (2.2.19), (2.2.24) and (2.2.12). The moment conditions (2.2.11), 
(2.2.19) and (2.2.12) are linear with respect to  , while (2.2.24) nonlinear.

2.3. Case of strictly exogenous explanatory variables
In this case, the assumption on the disturbance vit  is

E [vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 , for t=2, , T , (2.3.1)

where vi
t−1=vi1 , , vi , t−1  and xi

T=xi1 , , xiT  . The assumption (2.3.1) is referred to as 
the “original assumption” for the case of strictly exogenous explanatory variables. Kitazawa (2007) 
constructs the implicit standard assumptions from the original assumption (2.3.1) as follows:
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E [ yi1 vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 , (2.3.2)

E [vis vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 , for 2≤s≤t−1 , (2.3.3)

E [ xis vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 , for 1≤s≤T , (2.3.4)

E [i vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 . (2.3.5)

Here, the following assumption with respect to the overdispersion specified in the framework of 
Hausman et al. (1984) is imposed in addition to the implicit standard  assumptions (2.3.2) – (2.3.5):

E [ vit
2 − 1i  yit ∣ yi1 ,i , vi

t−1 , xi
T ]=0 , for t=2, ,T , (2.3.6)

where the construction of (2.3.6) is the same as the contents written in Appendix A, except that the 
terminology  “the  predetermined  explanatory  variables”  is  replaced  by  “the  strictly  exogenous 
variables”,  xi

t  is replaced by  xi
T  and (2.2.1) and (2.2.6) are replaced by (2.3.1) and (2.3.6) 

respectively.
Kitazawa  (2007,  2009)  obtains  some  moment  conditions  for  estimating    and    

consistently  under  the  assumptions  (2.3.2)  –  (2.3.5)  and  the  assumption  of  the  equidispersion 
instead  of  (2.3.6).  In  this  paper,  the  moment  conditions  associated  with the overdispersion are 
constructed  under  the  assumptions  (2.3.2)  –  (2.3.5)  and  the  assumption  (2.3.6).6 The  implicit 
operation proposed by Kitazawa (2007) is used for constructing the moment conditions.

According to Kitazawa (2007), the observable analogues for (2.3.2) – (2.3.4) are obtained by 
replacing the unobservable variables vit  by the observable variables uit :

E [ yi1 uit ∣ yi1 ,i , vi
t−1 , xi

T ]= yi1iit , (2.3.7)

E [uisuit ∣ yi1 ,i , vi
t−1 , xi

T ]=i
2isitvisiit , for 2≤s≤t−1 , (2.3.8)

E [ xis uit ∣ yi1 ,i , vi
t−1 , xi

T ]= xisiit , for 1≤s≤T , (2.3.9)

respectively.  In  addition,  the  observable  analogues  for  (2.3.6)  are  obtained  by  replacing  the 
unobservable  variables  vit  by  the  observable  variables  uit  and  further  replacing  the 
unobservable variables i yit  by the observable variables  yit u it−uit

2 /it :

E [ u it
2− yit   1/it u it

2− yit u it   ∣ yi1 ,i , vi
t−1 , xi

T ]=i
2it it1 ,

for t=2, , T , (2.3.10)

where the derivation of (2.3.10) is the same as that described in Appendix B, except that  xi
t  is 

6 That is, the cross-linkage moment conditions associated with the overdispersion are obtained under the assumption 
(2.3.1) with (2.3.6).
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replaced by  x i
T  and (2.2.1), (2.2.6) and (2.2.10) are replaced by (2.3.1), (2.3.6) and (2.3.10) 

respectively.
When  the  explanatory  variables  are  strictly  exogenous,  the  condensed  full  set  of  moment 

conditions associated with the overdispersion is obtained in the framework of that associated with 
the equidispersion. Kitazawa (2009) construct a condensed full set of moment conditions associated 
with the equidispersion.  It  is  derived from both of the relationships  between  yi1 ui , t−1  and 

yi1 uit  for  t=3, , T  and  the  relationships  between  uis ui , t−1  and  uis uit  for 
s=2, , t−2  and  t=4, ,T , both of the relationships between ui ,t−1

2  and ui ,t−1uit  

for t=3, , T  and the relationships between u i ,t−1uit  and uit
2  for t=3, , T , and the 

relationships between xis ui ,t−1  and xis uit  for s=1, , T  and t=3, , T , all of which 
are solved through the intermediary of the unconditional expectation operator after weighting them 
with  appropriate  transformations  of  explanatory  variables  xit  for  t=1, , T .  The  same 
relationships  are  used  for  deriving  the  full  set  of  moment  conditions  for  the  case  of  the 
overdispersion as for the case of the equidispersion.

From the relationships between yi1 ui , t−1  and yi1 uit  for  t=3, , T , the relationships 
between  uis ui , t−1  and  uis uit  for  s=2, , t−2  and  t=4, ,T  and the relationships 
between xis ui ,t−1  and xis uit  for s=1, , T  and t=3, , T , Kitazawa (2007) obtains 
the following T−2T −1/2  and T−2T  quasi-differenced moment conditions reformed 
for the case of strictly exogenous explanatory variables:

E [ yisuit−it /i ,t−1 ui ,t−1]=0 , for s=1, , t−2 ; t=3, , T , (2.3.11)

E [ xisuit−it /i , t−1ui , t−1]=0 , for s=1, , T ; t=3, , T . (2.3.12)

The moment conditions (2.3.11) and (2.3.12) hold even if the assumption (2.3.6) is not imposed.
The  moment  conditions  based  on  the  relationships  between  u i ,t−1

2  and  ui ,t−1 uit  for 

t=3, , T  and the relationships between ui ,t−1uit  and uit
2  for t=3, , T  are referred 

to  as  the  cross-linkage  moment  conditions,  according  to  Kitazawa  (2009).  For  the  case  of  the 
equidispersion and strictly exogenous explanatory variables,  Kitazawa (2009) derives the cross-
linkage moment conditions. From now on, two types of the cross-linkage moment conditions are 
solved for the case of the overdispersion and strictly exogenous explanatory variables by using the 
relationships between ui ,t−1

2  and  ui ,t−1 uit  for  t=3, , T  and the relationships between 
ui ,t−1uit  and uit

2  for t=3, , T .

First,  the  relationship  is  solved  between  the  transformation  using  u i ,t−1
2  (i.e. 

ui ,t−1
2 − yi ,t−1  1/i ,t−1 ui , t−1

2 − yi , t−1u i ,t−1  weighted  with  it /i ,t−11 )  and 
ui ,t−1 uit , through the intermediary of the unconditional expectation operator. Multiplying both 

sides of (2.3.10) dated t−1  by it /i ,t−11  gives

E [ it /i ,t−11ui , t−1
2 − yi ,t−1   ∣ yi1 ,i , vi

t−2 , xi
T ]

 E [ it /i ,t−111/i ,t−1ui , t−1
2 − yi ,t−1 ui , t−1 ∣ yi1 ,i , vi

t−2 , xi
T ]=i

2i ,t−1it
.
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(2.3.13)

Applying the law of total expectation to (2.3.13) and (2.3.8) for s=t−1 , it follows that

E [ it /i ,t−11ui , t−1
2 − yi ,t−1  ]

 E [it / i , t−111/i ,t−1ui , t−1
2 − yi ,t−1ui , t−1] = E [i

2i , t−1it ]
,

(2.3.14)

E [ui ,t−1 uit ]=E [i
2i , t−1it ] . (2.3.15)

Subtracting (2.3.14) from (2.3.15) gives

E [ui ,t−1  u it − it /i ,t−1111/i ,t−1 ui , t−1 ]

 E [ yi , t−1 it / i ,t−11]  E [ yi , t−1it / i , t−111/i , t−1ui , t−1] = 0
.

(2.3.16)

At this stage, it should be noted that the following relationship holds:

E [ui ,t−1  uit − it /i ,t−1111/i ,t−1 ui , t−1 ]

= E [ yi , t−1  u it − it / i , t−1111/i , t−1ui ,t−1 ] , (2.3.17)

whose derivation is written in Appendix E. Accordingly, plugging (2.3.17) into (2.3.16) gives the 
following T−2  cross-linkage moment conditions:

E [ yi ,t−1  u it − it / i , t−11u i ,t−1−1 ]=0 , for t=3, , T , (2.3.18)

in which the order reduction with respect to   is realized, compared to (2.3.16).
Next,  the  relationship  through the  intermediary  of  the  unconditional  expectation  operator  is 

solved  between  u i ,t−1 uit  (weighted  with  it1/i ,t−1 )  and  the  transformation  using 
uit

2  (i.e.  u it
2− yit   1/it u it

2− yit uit  ).  Multiplying  (2.3.8)  for  s=t−1  by 
it1/i ,t−1  gives

E [it1/i , t−1u i , t−1u it ∣ yi1 ,i , vi
t−1 , xi

T ]

= i
2 it it1  i vi ,t−1  it it1/i , t−1 

. (2.3.19)

Applying the law of total expectation to (2.3.19) and (2.3.10),

E [it1/i , t−1u i , t−1u it ] = E [i
2it it1] , (2.3.20)

E [ u it
2− yit   1/it u it

2− yit u it  ] = E [i
2it it1] . (2.3.21)

Subtracting  (2.3.20) from (2.3.21),  the following  T−2  cross-linkage  moment  conditions  are 
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obtained:

E [uit  it1/it uit−it1/i ,t−1 ui ,t−1   yit uit−1 − yit it1/it uit ]=0 ,

for t=3, , T . (2.3.22)

Eventually,  a condensed full set of the moment conditions for the case where the assumption 
with  respect  to  the  overdispersion  is  imposed  in  addition  to  the  implicit  standard  assumptions 
associated with strictly exogenous explanatory variables is composed of (2.3.11), (2.3.18), (2.3.22) 
and (2.3.12). That is, under the assumptions (2.3.1) with (2.3.6), the condensed full set is composed 
of the moment conditions (2.3.11), (2.3.18), (2.3.22) and (2.3.12). The moment conditions (2.3.11), 
(2.3.18) and (2.3.12) are linear with respect to  , while (2.3.22) nonlinear.

2.4. Case of mean-stationary dependent variables
In this case, the stationarities of the dependent and explanatory variables are additionally assumed 
for the case of predetermined explanatory variables in the LFM (2.1.1) (see Kitazawa, 2007).  

When

E [exp k xit  ∣i ]=E [i k  ∣i ] , for t=1, , T (2.4.1)

with k  being any real number and

yi1=1 /1−ii1vi1 (2.4.2)

with

E [vi1 ∣i , xi1]=0 , (2.4.3)

the dependent variables in the LFM are mean-stationary:

E [ yit ]=1/1−E [ii] , for t=1, , T . (2.4.4)

The assumption (2.4.1) implies that the explanatory variables xit  are stationary in the sense that 
their moment generating functions are equal over time. In this case, the observable analogue (2.2.7) 
is rewritten as

E [ yi1 uit ∣ yi1 ,i , vi
t−1 , xi

t ]=1/ 1−i
2i1itvi1iit . (2.4.5)

Using  the  observable  analogues  (2.4.5)  (instead  of  (2.2.7))  and  (2.2.8)  with  (2.4.1),  the 
relationships  between  yi1 ui3  and  ui2 ui3  and between  ui ,t−2uit  and  ui ,t−1uit  for 

t=4, ,T through the intermediary of the unconditional  expectation  operator  after  weighting 
them with appropriate transformations of explanatory variables xit  for t=1, , T  are realized 
by Kitazawa (2007) as the following T−2  stationarity moment conditions for the case without 
the assumption with respect to the overdispersion (2.2.6):

E [ y i ,t−1 1/it u it ]=0 , for t=3, , T , (2.4.6)
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where   is the first-differencing operator.
In  addition,  the  relationships  between  xi , t−1uit  and  xit uit  for  t=2, , T  are  also 

realized by Kitazawa as the following T−1  stationarity moment conditions for the case without 
the assumption with respect to the overdispersion (2.2.6):

E [ xit 1/itu it ]=0 , for t=2, ,T . (2.4.7)

From now on, the cross-linkage moment conditions for the case of mean-stationary dependent 
variables are constructed in the situation where the assumptions (2.4.1) and (2.4.2) with (2.4.3) are 
imposed in addition to the assumptions (2.2.2) – (2.2.6). They are solved by using the relationship 
between  yi1 ui2  and  u i2

2  and  the  relationships  between  u i ,t−1uit  and  uit
2  for 

t=3, , T .
First,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved  between  yi1 ui2  (weighted  with  1/i2 )  and  the  transformation  using  ui2
2  (i.e. 

ui2
2 − yi2  1/i2ui2

2 − yi2 ui2  weighted  with  1/i21 ).  Multiplying  (2.4.5)  by 
1/it  gives

E [ yi11/it uit ∣ yi1 ,i , vi
t−1 , xi

t ]=1 /1−i
2i1vi1i . (2.4.8)

In addition, multiplying (2.2.10) by 1/it1  gives

E [ 1/it1uit
2− yit  1 /it11/it uit

2− yit uit   ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2it .

(2.4.9)

Applying the law of total expectation to (2.4.8) and (2.4.9) and allowing for (2.4.1), it follows that

E [ yi11/it uit ]=1 /1−E [i
2i ] , (2.4.10)

E [ 1/it1uit
2− yit  1 /it11/it uit

2− yit uit  ]=E [i
2i ] . (2.4.11)

Subtracting (2.4.10) for t=2  multiplied by 1−  from (2.4.11) for t=2  gives

E [ yi21/i21ui2−1 − yi11/i2ui2 ]=0 . (2.4.12)

The detail of derivation of (2.4.12) is written in Appendix F.
Next,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved between  ui ,t−1uit  (weighted  with  1/it )  and the transformation  using  uit
2  (i.e. 

uit
2− yit   1/it u it

2− yit uit   weighted  with  1/it1 ).  Allowing for  (2.4.1),  equation 
(2.2.22) is written as

E [ui ,t−1 1/ituit ]=E [i
2i ] . (2.4.13)
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Subtracting (2.4.13) from (2.4.11) gives

E [ yit 1/it1uit−1  uit 1/it uit− yit 1/it uit ]=0 . (2.4.14)

The detail of derivation of (2.4.14) is written in Appendix G. In addition, creating the recursive 
equation

E [ yit 1/it uit ]= E [ yi ,t−1 1/it uit ]E [uit 1/it uit ] , for t=3, , T .

(2.4.15)

from the first-differences of (2.1.2) and applying the moment conditions (2.4.6), it can be seen that 
the following relationships hold:

E [uit 1/it uit ]=E [ yit 1/ituit ] , for t=3, , T . (2.4.16)

Accordingly, plugging (2.4.16) into (2.4.14) gives the following T−2  moment conditions:

E [ yit 1/it1uit−1 − yi , t−1 1 /it uit ]=0 , for t=3, , T , (2.4.17)

in which the order reduction with respect to   is realized, compared to (2.4.14).
Writing (2.4.12) and (2.4.17) jointly, it follows that

E [ yit 1/it1uit−1 − yi , t−1 1 /it uit ]=0 , for t=2, ,T , (2.4.18)

which are referred to as the stationarity moment conditions for the case of the overdispersion and 
whose number is T−1 .

It should also be noted that for the case of the overdispersion formulated by (2.2.6) as well as for 
the case of the equidispersion, the intertemporal homoscedasticity moment conditions proposed by 
Ahn (1990) and Ahn and Schmidt (1995) in the context of the dynamic panel data model  hold:

E [uit
2−u i ,t−1

2 ]=0 , for t=3, , T , (2.4.19)

when the dependent variables  yit  are mean-stationary. That is, the moment conditions (2.4.19) 
are obtained by using the relationships (2.4.4) and the relationships

E [i yit ]=1/1− E [i
2i] , for t=1, , T , (2.4.20)

both of which hold when the assumptions (2.4.1)  and (2.4.2) with (2.4.3) are additionally imposed. 
The  implication  of  (2.4.19)  is  that  the  disturbances  vit  are  homoscedastic  over  time  (see 
Kitazawa, 2007).

Eventually, a condensed full set of the moment conditions for the case of stationary dependent 
variables  when the assumption with respect to the overdispersion is imposed in addition to the 
implicit standard assumptions associated with predetermined explanatory variables is composed of 
(2.2.11), (2.2.19), (2.4.18), (2.2.12) and (2.4.7). That is, under the assumptions (2.2.1) with (2.2.6),
(2.4.1)  and  (2.4.2)  with  (2.4.3),  the  condensed  full  set  is  composed  of  the  moment  conditions 
(2.2.11), (2.2.19), (2.4.18), (2.2.12) and (2.4.7), all of which are linear with respect to  .
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2.5. Discussion
There can be a case where a manipulation is needed, when using any of the moment conditions 
(2.2.24) and (2.4.18) for the estimation of   and  . If all values in  xit  are positive, the 
estimates of   using these moment conditions seem to be in danger of going to infinity. In this 
case,  in order that  xit  contains both positive and negative values evenly,  x it  needs to be 
transformed in deviation from an appropriate value  b . That is,  xit  needs to be used in the 
estimations instead of xit , where xit= xit−b . The selection of b  by Windmeijer (2000) is 

the overall mean of x it  (i.e. b= 1 /N T  ∑
i=1

N

∑
t=1

T

xit ).

2.6. GMM estimators
Any set of the moment conditions for the LFM (2.1.1) can be collectively written in the following 

m×1  vector form:  

E [ gi ]=0 , (2.6.1)

where  m  is number of moment conditions,  =[ ] ' ,  g i   (which is the function of 
 ) is composed of the observable variables and   for the individual i . Using the following 

empirical counterpart for (2.6.1):

g  = 1/N ∑
i=1

N

g i  , (2.6.2)

the GMM estimator   is constructed by minimizing the following criterion function with respect 
to  :

g  ' W N  1 g  , (2.6.3)

where the  m×m  optimal  weighting  matrix  is  given as  follows by using  a  initial  consistent 
estimator of    (i.e. 1 ):

W N  1=1 /N ∑
i=1

N

gi
1g i

1 '
−1

. (2.6.4)

The efficient asymptotic variance of   is estimated by using

V  =1 /N D   ' W N  1 D  −1 , (2.6.5)

where  D =∂ g /∂ '∣
= .7 The GMM estimations for the LFM are explained in detail in 

Windmeijer (2002, 2008).
Some GMM estimators are constructed, associated with the overdispersion. Firstly, for the case 

of predetermined explanatory variables, the GMM estimator using the moment conditions (2.2.11), 

7 It is conceivable that the usage of the finite sample corrected variance proposed by Windmeijer (2005, 2008) would 
be preferable in small sample.
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(2.2.12) and (2.2.19) is referred to as the GMM(qdcn) estimator, while that using (2.2.11), (2.2.12), 
(2.2.19) and (2.2.24) is referred to as the GMM(prcn) estimator. Secondly, for the case of strictly 
exogenous  explanatory  variables,  the  GMM  estimator  using  the  moment  conditions  (2.3.11), 
(2.3.12) and (2.3.18) is referred to as the GMM(qecn) estimator, while that using (2.3.11), (2.3.12), 
(2.3.18)  and (2.3.22) is referred to as the GMM(excn) estimator. Thirdly,  for the case of mean-
stationary dependent variables, the GMM estimator using the moment conditions (2.2.11), (2.2.12), 
(2.2.19), (2.4.7) and (2.4.18) is referred to as the GMM(sacn) estimator.

Kitazawa (2009) proposes some GMM estimators  associated  with the equidispersion.  In this 
paper, the GMM(qdc), GMM(prc), GMM(qec), GMM(exc) and GMM(sac) estimators proposed by 
Kitazawa (2009) are referred to as the GMM(qdcp), GMM(prcp), GMM(qecp), GMM(excp) and 
GMM(sacp)  estimators,  respectively.  The  GMM  estimators  corresponding  to  the  GMM(qdcp), 
GMM(prcp),  GMM(qecp),  GMM(excp)  and  GMM(sacp)  estimators  are  the  GMM(qdcn), 
GMM(prcn),  GMM(qecn),  GMM(excn)  and  GMM(sacn)  estimators  in  the  case  of  the 
overdisperion.

In  addition,  there  are  some  distribution-free  GMM  estimators:  the  GMM(qd),  GMM(pr), 
GMM(qe), GMM(ex) and GMM(sa) (see Kitazawa, 2007 and 2009).

It  should  be  noted  that  the  transformation  described  in  previous  subsection  is  needed  to 
implement  the  GMM(pr),  GMM(prcp),  GMM(prcn),  GMM(sa),  GMM(sacp)  and  GMM(sacn) 
estimators.

3. Monte Carlo
In this section, some small sample performances of a portion of the GMM estimators exhibited in 
previous section are investigated with Monte Carlo experiments. The GMM estimators to be looked 
into in this paper are the GMM(qd). GMM(qdcp), GMM(qdcn) and GMM(pr) estimators (which are 
tailored to the specification of predetermined explanatory variables), the GMM(qe). GMM(qecp), 
GMM(qecn) and GMM(ex) estimators (which are tailored to the specification of strictly exogenous 
explanatory  variables)  and  the  GMM(sa).  GMM(sacp)  and  GMM(sacn)  estimators  (which  are 
tailored  to  the  specification  of  mean-stationarity  dependent  variables).  The  experiments  are 
implemented by using an econometric software TSP version 4.5.8

3.1. Data generating process
Two types of data generating process (DGP) are configured: in one type, the dependent variables 
are generated from the Poisson distribution,  while  in another type,  they are generated from the 
negative binomial distribution with the functional form based on the model in section 2.

The one type of DGP is as follows:

yit~Poisson yi , t−1exp xiti  , (3.1.1)

yi ,−TG1~Poisson1/1−exp xi ,−TG1i  , (3.1.2)

xit= xi ,t−1iit , (3.1.3)

xi ,−TG1=1/1−i1 /1−21/2i ,−TG1 , (3.1.4)

i~N 0,
2  ;  it~N 0,

2 ,

8 See Hall and Cummins (2006) as for the details of the software.

14



where t=−TG1, ,−1,0,1, , T  with  TG  being the number of pre-sample periods to be 
generated. In the DGP, values are set to the parameters  ,  ,  ,  , 

2  and 
2 . 

The experiments are carried out with TG=50 , the cross-sectional sizes N=100 , 500  and 
1000 , the numbers of periods used for the estimations  T=4  and 8  and the number of 

replications NR=1000 . This DGP setting is the same as that of Blundell et al. (2002), except for 
the initial condition of yit . That is, the initial condition (3.1.2) denotes that the initial conditions 
of dependent variables are stationary. The DGP is configured with the explanatory variables xit  
being strictly exogenous.

In the another type of DGP, equations (3.1.1) and (3.1.2) are replaced by the following ones 
respectively:

yit~Negbin   yi , t−1/exp iexp xit  , exp i  , (3.1.5)

yi ,−TG1~Negbin  1/1−exp  xi ,−TG1 , exp i  , (3.1.6)

where the  denotation  X ~Negbin  ,  implies  that  the  (non-negative  integer-valued)  count 
variable X  is distributed as the negative binomial distribution whose probability function is

p  X  =  X /  X 11/1/1X , (3.1.7)

where  ⋅  is the gamma function written as   s=∫
0

∞

zs−1exp −zdz  for  s0   and 

   and   are the parameters with ≥0  and ≥0  respectively.
The DGP composed of (3.1.1), (3.1.2), (3.1.3) and (3.1.4) is referred to as the “DGP-Poisson”, 

while the DGP composed of (3.1.5), (3.1.6), (3.1.3) and (3.1.4) is referred to as the “DGP-Negbin”. 
In the DGP-Poisson, the GMM estimators incorporating the moment conditions associated with the 
equidispersion are consistent for large N  and small T , while those incorporating the moment 
conditions associated with the negative binomial model are inconsistent. Antithetically, in the DGP-
Negbin,  the  GMM  estimators  incorporating  the  moment  conditions  associated  with  the 
equidispersion are inconsistent, while those incorporating the moment conditions associated with 
the negative binomial model are consistent. Accordingly,  it  is expected that for large  N , the 
considerable  degrees  of  endemic  bias  and  rmse  are  found  in  the  DGP-Poisson  for  the  GMM 
estimators incorporating the moment conditions associated with the negative binomial model, while 
the considerable degrees of endemic bias and rmse are found in the DGP-Negbin for the GMM 
estimators incorporating the moment conditions associated with the equidispersion.

3.2. Estimators for comparison
The following three estimators are used for comparison: the Level estimator, the within group (WG) 
mean scaling estimator and the pre-sample mean (PSM) estimator.9 The Level and WG estimators 
are inconsistent in the DGP settings above, where N  and T  are able to be regarded as being 
large and small respectively. On the contrary, the PSM estimator is consistent if the long history is 
used in constructing the pre-sample means of dependent variables. The details on these estimators 
are described in Blundell et al. (1999, 2002) and Kitazawa (2007).

9 The WG estimator proposed by Blundell et al. (2002) is consistent for the case of allowing for the strictly exogenous 
explanatory variables and no dynamics. In addition, Lancaster (2002) and Blundell et al. (2002) point out that the 
Poisson maximum likelihood estimator is the same as the Poisson conditional maximum likelihood estimator and 
furthermore Blundell et al. (2002) show that they are identical to the WG estimator. The WG estimator requires no 
distributional assumption.
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3.3. Monte Carlo results
For  T=4 ,  Monte  Carlo results  are  shown in Table  1  for  the Poisson model  (i.e.  the DGP-
Poisson) and in Table 2 for the negative binomial model (i.e. the DGP-Negbin), while for T=8 , 
they are shown in  Table 3 for the Poisson model and in Table 4 for the negative binomial model.

In  all  tables,  the  endemic  upward  and  downward  biases  are  found  for  the  Level  and  WG 
estimators respectively, while the PSM estimator behaves better as the longer pre-sample history is 
used.

The instruments used for the GMM estimators are curtailed so that the past dependent variables (
yit ) dated  t−3  and before are not used for the quasi-differenced equation dated  t  and 

further  for  the  GMM(qd),  GMM(qdcp),  GMM(qdcn),  GMM(pr),  GMM(sa),  GMM(sacp)  and 
GMM(sacn) estimators the past explanatory variables ( x it ) dated  t−3  and before are not 
used for the quasi-differenced equation dated t .

The results on the GMM estimators say that if the cross-linkage moment conditions are valid for 
each specification of count dependent variables, the small sample properties could be considered to 
be improved by using the cross-linkage moment conditions, while if not so, the bias and rmse are of 
the considerable magnitude.

Firstly, it can be said that the GMM estimators using the cross-linkage moment conditions valid 
for  each  specification  of  count  dependent  variables  outperform  the  conventional  GMM(qd) 
estimator.

Secondly, looking at Tables 1 and 3 where the DGP-Poisson is used, the small sample properties 
of  the GMM estimators  incorporating  the  cross-linkage  moment  conditions  associated  with the 
equidispersion  improve  as  the  cross-sectional  size  N   increases  from  100 ,  500  to 

1000 , while those of the GMM estimators incorporating the cross-linkage moment conditions 
associated with the overdispersion remain to be poor. Conversely, looking at Tables 2 and 4 where 
the DGP-Negbin is used, the small  sample properties of the GMM estimators incorporating the 
cross-linkage moment conditions associated with the overdispersion improve as the cross-sectional 
size  N   increases  from  100 ,  500  to  1000 ,  while  those  of  the  GMM estimators 
incorporating the cross-linkage moment conditions associated with the equidispersion remain to be 
poor. Further, it can be recognized that for the case of using the moment conditions invalid for each 
DGP, the augmentations of the Monte Carlo means of the Sargan statistic emerge as the cross-
sectional size increases, which are said to be the reflections of the inconsistency.

Thirdly,  comparing  the  results  for  the  GMM(qd)  estimator  with  those  for  the  GMM(qdcp) 
estimator and comparing the results for the GMM(qe) estimator with those for the GMM(qecp) 
estimator in Tables 1 and 3 where the DGP is of the Poisson model, it can be said that some gains 
and no loss seem to be obtained in small  sample by using the cross-linkage moment conditions 
associated with the equidispersion.  Likewise,  comparing the results for the GMM(qd) estimator 
with those for the GMM(qdcn) estimator and comparing the results for the GMM(qe) estimator 
with those for the GMM(qecn)  estimator  in  Tables  2 and 4 where the DGP is  of the negative 
binomial model, it can be said that some gains and no loss seem to be obtained in small sample by 
using the cross-linkage moment conditions associated with the overdispersion. It is shown in the 
limited Monte Carlo experiments that the additional usage of the cross-linkage moment conditions 
improve  or  do  not  at  least  vitiate  the  small  sample  performances  as  long as  the  cross-linkage 
moment conditions are valid.

Fourth,  comparing  the  results  for  the  GMM(sa)  estimator  with  those  for  the  GMM(sacp) 
estimator in Tables 1 and 3 where the DGP is of the Poisson model, it can be said that the GMM 
estimators  utilizing  the  condensed  full  set  incorporating  the  cross-linkage  moment  conditions 
associated with the equidispersion maximally does not underperform those without incorporating 
the cross-linkage moment conditions. Likewise, comparing the results for the GMM(sa) estimator 
with those for the GMM(sacn)  estimator  in  Tables  2  and 4 where the DGP is  of  the negative 
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binomial  model,  it  can  be  said  that  the  GMM  estimators  utilizing  the  condensed  full  set 
incorporating the cross-linkage moment conditions associated with the overdispersion maximally 
does not underperform those without incorporating the cross-linkage moment conditions.

4. Conclusion
In  this  paper,  the cross-linkage  moment  conditions  associated  with an overdispersion for count 
panel data model were proposed for the case of predetermined explanatory variables, for the case of 
strictly exogenous explanatory variables and for the case of mean-stationary dependent variables. 
The  specification  of  the  model  is  an  extension  of  the  fixed  effects  negative  binomial  model 
proposed by Hausman et al. (1984) to the linear feedback model (LFM) proposed by Blundell et al. 
(2002)  and the  consistent  (GMM) estimations  with  the  overdispersion  taken  into  consideration 
became possible for the negative binomial count panel data model. It was corroborated from some 
Monte  Carlo  experiments  that  for  the  negative  binomial  model,  the  cross-linkage  moment 
conditions associated with the overdispersion are valid and the usage of the cross-linkage moment 
conditions associated with the overdispersion ameliorate  or do not at  least  deteriorate  the small 
sample performances.

Appendix A.
The conditional probability of the dependent variables in the negative binomial model specified by 
Hausman  et  al.  (1984)  is  written  as  follows,  incorporating  the  dynamics  and  allowing  for  the 
predetermined explanatory variables:

p  yit ∣ yi1 ,i , vi
t−1 , xi

t  =  it yit / it   yit11/ 1i
iti / 1i

yit ,

(A.1)

where  ⋅  is  the gamma function written as   s=∫
0

∞

zs−1exp −zdz  for  s0  and

it=E [ yit 1/i ∣ yi1 ,i , vi
t−1 , xi

t ] . In this case, the conditional variance is written as

Var [ yit ∣ yi1 ,i , vi
t−1 , xi

t ]= 1iE [ yit ∣ yi1 ,i , vi
t−1 , xi

t ] . (A.2)

Allowing for the system (2.1.1) with (2.2.1),

E [ yit ∣ yi1 ,i , vi
t−1 , xi

t ]= yi , t−1expi xit  (A.3)

and accordingly

Var [ yit ∣ yi1 ,i , vi
t−1 , xi

t ]= Var [vit ∣ yi1 ,i , vi
t−1 , xi

t ] . (A.4)

Plugging (A.4) into (A.2) gives (2.2.6).

Appendix B.
Firstly, the following relationship holds:
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E [vit
2 ∣ yi1 ,i , vi

t−1 , xi
t ] = E [uit

2 ∣ yi1 ,i , vi
t−1 , xi

t ] − i
2it

2 , (B.1)

where the relationship E [iit vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0  originating from (2.2.1) is used.
Next, the following relationship is obtained:

E [i yit ∣ yi1 ,i , vi
t−1 , xi

t ] = i yi , t−1i
2it , (B.2)

by utilizing the relationship E [i vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0  originating from (2.2.1). Further, the 
following relationship is obtained:

E [ yit−uit uit 1/it ∣ yi1 ,i , vi
t−1 , xi

t ]=  yi ,t−1i , (B.3)

by utilizing the relationship  E [ yi ,t−1 1/itvit ∣ yi1 ,i , vi
t−1 , x i

t ] = 0  originating from (2.2.1). 
Employing (B.3) reduces (B.2) to

E [i yit ∣ yi1 ,i , vi
t−1 , xi

t ] = E [ yit−uit uit 1/it ∣ yi1 ,i , vi
t−1 , xi

t ] i
2it .

(B.4)

Plugging (B.1) and (B.4) into (2.2.6) gives (2.2.10).

Appendix C.
Firstly, creating the recursive equation

E [ yi ,t−1 i , t−1/it uit−ui , t−1]

=  E [ yi , t−2 i , t−1/it u it−ui , t−1] E [ui , t−1 i , t−1/itu it−u i , t−1]
,

(C.1)

from (2.1.2) dated t−1  and applying the moment conditions (2.2.11) for s=t−2 , it can be 
seen that equation (2.2.17) holds.

Next, creating the recursive equation

E [ yi ,t−1  1/it uit−1/i ,t−1 u i ,t−1 ]

=  E [ yi , t−2  1/it uit−1/i ,t−1u i ,t−1 ] E [ui , t−1  1/it uit−1/i , t−1ui , t−1 ]
,

(C.2)

from (2.1.2) dated  t−1  and applying one of the moment conditions based on the Wooldridge 
transformation

E [ yi ,t−2 1/itu it−1/i , t−1ui , t−1 ]=0 , t=3, , T , (C.3)

it can be seen that equation (2.2.18) holds.
It  is  corroborated  that  the  moment  conditions  (C.3)  are  obtained  by  the  implicit  operation. 
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Multiplying both sides of the observable analogues (2.2.7) and (2.2.8) by 1/it  gives

E [ yi11/it uit ∣ yi1 ,i , vi
t−1 , x i

t ]= yi1i , (C.4)

E [uis1/it uit ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2isvisi , for 2≤s≤t−1 . (C.5)

Applying the law of total expectation to (C.4) and (C.5) gives

E [ yi11/it uit ]=E [ yi1i ] , (C.6)

E [uis1/it uit ]=E [i
2 is ] , for 2≤s≤t−1 . (C.7)

where (2.2.5) for t=s  is used to obtain (C.7). Taking the first-differences of (C.6) and (C.7) with 
respect to t  gives

E [ yi1 1 /it uit−1/i ,t−1ui ,t−1 ]=0 , (C.8)

E [uis 1/it uit−1/i , t−1ui ,t−1 ]=0 . for 2≤s≤t−2 . (C.9)

Creating the recursive equation

E [ yis 1/it u it−1/i ,t−1ui ,t−1 ]

=  E [ yi , s−1  1/it uit−1/i ,t−1 ui ,t−1 ] E [uis 1/it uit−1/i , t−1ui , t−1 ]
,

for 2≤s≤t−2 , (C.10)

from (2.1.2) for t=s  and applying the initial condition (C.8) and the innovation (C.9) to (C.10) 
successively generates the following moment conditions based on the Wooldridge transformation:

E [ yis 1/it u it−1/i ,t−1ui ,t−1 ]=0 , for s=1, , t−2 ; t=3, , T .

(C.11)

The  moment  conditions  utilizing  the  Wooldridge  transformation  are  explained  in  Wooldridge 
(1997) and Windmeijer  (2000, 2008). The moment  conditions  (C.3) are the moment  conditions 
(C.11) for s=t−2 .

Appendix D.
Subtracting  (2.2.22)   from  (2.2.23), it follows that

E [1/it   i ,t−1/it1 u it−ui , t−1 uit ]  E [1/it   i ,t−1 /it1 1 /it  uit
2 ]

− E [ yit 1 /it   i , t−1/ it1 1/it  uit ] − E [ yit 1/it i , t−1/ it1 ] = 0
.

(D.1)
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Using the relationship  i ,t−1 /it1  11/it  =i ,t−1 /it  and an arrangement, (D.1) is 
written as

E [1/it   i ,t−1/it uit−ui , t−1 uit ]

− E [ yit 1 /it   i , t−1/ it1 1/it  u it ] − E [ yit 1/it   i ,t−1 /it1  uit ]
 E [ yit 1/it   i ,t−1 /it1  u it ] − E [ yit 1 /it  i ,t−1 /it1 ] = 0

.

(D.2)

Further,  using  the  relationship  i ,t−1 /it1  11/it  =i ,t−1 /it ,  (D.2)  is  written  as 
(2.2.24).

Appendix E.
Creating the recursive equations

E [ yi ,t−1 u it−it /i , t−1ui , t−1]

=  E [ yi , t−2 u it−it /i , t−1ui , t−1] E [ui , t−1 uit−it /i ,t−1u i , t−1]
,

(E.1)

from (2.1.2) dated  t−1  and applying the moment conditions (2.3.11) for  s=t−2  and the 
relationship it /i , t−1= it /i ,t−11  11/i ,t−1   to (E.1), it can be seen that equation 
(2.3.17) holds.

Appendix F.
It should be noted that (2.4.10) can be rewritten as

E [1/ it111/it  yi1 uit ]=1/ 1−E [i
2] , (F.1)

since 1/it= 1 /it1  11/it   .
Subtracting (F.1) for t=2  multiplied by 1−  from (2.4.11) for t=2  gives

E [1/ i21ui2 ui2−1− yi1]− E [1/i21 yi2]

 E [1 /i211/i2ui2ui2−1− yi1] − E [1/ i211/i2 yi2 ui2 ] = 0 .

(F.2)

Using the  relationship  uit−1− yi , t−1= yit  stemming  from (2.1.2)  and  an  arrangement, 
(F.2) is rewritten as

E [1/ i21ui2 yi2] − E [1 /i21 yi2 ] E [1/i211/i2ui2 yi2]

 E [1 /i21 yi2 ui2] − E [ 1/i21 yi2 ui2] − E [1/i211 /i2 yi2 u i2] = 0 .

(F.3)
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Applying the relationship  1/it1  11/it  =1/it  to (F.3), (F.3) reduces to (2.4.12).

Appendix G.
It should be noted that (2.4.13) can be rewritten as

E [1/ it111/it ui ,t−1 uit ]=E [i
2] , (G.1)

since 1/it= 1 /it1  11/it   .
Subtracting (G.1) from (2.4.11) and employing an arrangement give

E [1/ it1uit u it ]− E [1/it1 yit ] E [1/ it11/it uit uit ]

 E [1 /it1 yit uit ]− E [1/ it1 yit uit ]− E [1/it11 /it  yit uit ] = 0 .

(G.2)

Applying the relationship  1/it1  11/it  =1/it  to (G.2), (G.2) reduces to (2.4.14). 
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Table 1 Monte Carlo results for LFM, T=4 (Poisson model)
=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 
2=0.5

See Notes of Tables.
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N=100 N=500 N=1000

bias bias bias

Level 0.256 0.264 0.273 0.275 0.278 0.279 
0.545 0.656 0.549 0.571 0.557 0.573 

WG -0 .452 0 .463 -0 .446 0 .449 -0 .446 0 .447 
-0 .260 0 .272 -0 .261 0 .263 -0 .263 0 .264 

-0.274 0.398 -0.104 0.161 -0.061 0.112 
-0.259 0.371 -0.124 0.219 -0.078 0.172 

4.42 4 4.58 4 4.58 4 
-0 .054 0 .155 -0 .006 0 .066 -0 .001 0 .045 
-0 .134 0 .288 -0 .028 0 .148 -0 .013 0 .104 

8 .72 6  7 .91  6  7 .56  6 
0.262 0.273 0.234 0.237 0.227 0.228 
0.082 0.379 0.420 0.474 0.542 0.568 
8.36 6 11.30 6 12.34 6 

GMM(pr) -0 .090 0 .214 -0 .037 0 .092 -0 .016 0 .067 
-0 .159 0 .282 -0 .059 0 .157 -0 .026 0 .134 

5 .62 5  5 .66  5  5 .66  5

-0.222 0.306 -0.060 0.110 -0.031 0.075 
-0.148 0.220 -0.049 0.111 -0.025 0.086 

9.03 8 8.90 8 8.52 8 
-0 .074 0 .156 -0 .004 0 .060 0 .000 0 .042 
-0 .083 0 .185 -0 .008 0 .088 -0 .001 0 .067 

13 .88 10  12 .13  10  11 .27  10 
0.233 0.247 0.255 0.257 0.260 0.261 
0.114 0.316 0.284 0.322 0.323 0.344 
14.18 10 20.35 10 26.97 10 

GMM(ex) -0 .103 0 .226 -0 .035 0 .092 -0 .015 0 .058 
-0 .106 0 .214 -0 .032 0 .106 -0 .013 0 .077 

9 .97 9  9 .79  9  9 .35  9 

-0.023 0.139 -0.019 0.079 -0.010 0.059 
-0.053 0.212 -0.023 0.137 -0.012 0.104 

9.70 9 9.46 9 9.46 9 
0 .038 0 .115 0 .016 0 .060 0 .011 0 .043 

-0 .022 0 .215 0 .016 0 .133 0 .012 0 .099 
14 .06 12  12 .87  12  12 .91  12 
0.277 0.283 0.249 0.250 0.242 0.242 
0.036 0.263 0.350 0.391 0.471 0.490 
18.21 12 30.10 12 38.17 12 

PSM 0 .132 0 .156 0 .157 0 .162 0 .163 0 .167 
0 .191 0 .296 0 .205 0 .225 0 .211 0 .229 
0.104 0.132 0.125 0.131 0.130 0.135 
0.141 0.228 0.148 0.165 0.152 0.165 

0 .046 0 .091 0 .061 0 .072 0 .066 0 .073 
0 .058 0 .139 0 .062 0 .083 0 .065 0 .078 
0.020 0.081 0.033 0.050 0.038 0.048 

0.031 0.119 0.032 0.059 0.035 0.052 

rmse rmse rmse
Sargan df Sargan df Sargan df

γ
β
γ
β

GMM(qd) γ
β

GMM(qdcp) γ
β

GMM(qdcn) γ
β

γ
β

GMM(qe) γ
β

GMM(qecp) γ
β

GMM(qecn) γ
β

γ
β

GMM(sa) γ
β

GMM(sacp) γ
β

GMM(sacn) γ
β

γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50)

β(50)



Table 2 Monte Carlo results for LFM, T=4 (Negative binomial model)
=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 
2=0.5

See Notes of Tables.
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N=100 N=500 N=1000

bias bias bias

Level 0.133 0.165 0.154 0.162 0.158 0.163 
0.302 0.419 0.300 0.357 0.303 0.325 

WG -0 .513 0 .533 -0 .500 0 .506 -0 .500 0 .503 
-0 .264 0 .294 -0 .275 0 .280 -0 .276 0 .279 

-0.350 0.521 -0.156 0.249 -0.098 0.165 
-0.327 0.496 -0.205 0.295 -0.132 0.242 

4.27 4 4.45 4 4.36 4 
-0 .448 0 .485 -0 .449 0 .460 -0 .444 0 .450 
-0 .389 0 .503 -0 .437 0 .468 -0 .443 0 .459 

7 .13 6  11 .09  6  15 .57  6 
0.008 0.113 0.007 0.052 0.005 0.037 

-0.133 0.399 -0.054 0.193 -0.017 0.134 
6.68 6 6.96 6 6.59 6 

GMM(pr) -0 .124 0 .269 -0 .068 0 .154 -0 .043 0 .120 
-0 .219 0 .408 -0 .129 0 .244 -0 .082 0 .202 

5 .31 5  5 .48  5  5 .26  5

-0.301 0.417 -0.106 0.167 -0.069 0.114 
-0.181 0.292 -0.082 0.153 -0.056 0.117 

9.18 8 8.81 8 8.77 8 
-0 .459 0 .495 -0 .438 0 .447 -0 .433 0 .438 
-0 .253 0 .314 -0 .255 0 .264 -0 .256 0 .261 

12 .67 10  21 .45  10  31 .62  10 
-0.034 0.118 0.000 0.049 0.001 0.036 
-0.064 0.283 -0.007 0.119 -0.002 0.083 
11.67 10 11.06 10 10.91 10 

GMM(ex) -0 .150 0 .289 -0 .063 0 .141 -0 .046 0 .097 
-0 .158 0 .315 -0 .064 0 .158 -0 .043 0 .112 

9 .91 9  9 .73  9  9 .74  9 

-0.089 0.195 -0.050 0.111 -0.037 0.085 
-0.125 0.287 -0.078 0.173 -0.046 0.139 

9.59 9 9.83 9 9.19 9 
-0 .469 0 .525 -0 .594 0 .612 -0 .623 0 .636 
-0 .029 0 .331 -0 .203 0 .260 -0 .264 0 .292 

17 .06 12  43 .04  12  71 .02  12 
0.013 0.082 0.008 0.039 0.005 0.028 

-0.108 0.345 -0.039 0.159 -0.012 0.106 
13.37 12 13.67 12 13.02 12 

PSM 0 .057 0 .121 0 .085 0 .103 0 .092 0 .104 
0 .144 0 .276 0 .153 0 .337 0 .156 0 .206 
0.041 0.113 0.068 0.090 0.076 0.089 
0.109 0.236 0.113 0.177 0.120 0.156 

0 .005 0 .106 0 .032 0 .067 0 .040 0 .061 
0 .053 0 .197 0 .053 0 .111 0 .059 0 .090 
-0.012 0.108 0.014 0.061 0.022 0.051 

0.031 0.184 0.028 0.094 0.034 0.071 

rmse rmse rmse
Sargan df Sargan df Sargan df

γ
β
γ
β

GMM(qd) γ
β

GMM(qdcp) γ
β

GMM(qdcn) γ
β

γ
β

GMM(qe) γ
β

GMM(qecp) γ
β

GMM(qecn) γ
β

γ
β

GMM(sa) γ
β

GMM(sacp) γ
β

GMM(sacn) γ
β

γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50)

β(50)



Table 3 Monte Carlo results for LFM, T=8 (Poisson model)
=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 
2=0.5

See Notes of Tables.
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N=100 N=500 N=1000

bias bias bias

Level 0.262 0.267 0.275 0.277 0.278 0.279 
0.537 0.586 0.550 0.565 0.559 0.568 

WG -0 .189 0 .198 -0 .184 0 .186 -0 .185 0 .186 
-0 .126 0 .139 -0 .127 0 .130 -0 .127 0 .129 

-0.229 0.261 -0.076 0.096 -0.046 0.062 
-0.232 0.265 -0.105 0.131 -0.066 0.091 
18.11 16 18.21 16 17.94 16 

-0 .147 0 .185 -0 .019 0 .044 -0 .007 0 .027 
-0 .217 0 .257 -0 .057 0 .093 -0 .024 0 .057 

29 .39 22  28 .97  22  27 .80  22 
0.235 0.241 0.225 0.226 0.221 0.221 
0.058 0.224 0.372 0.391 0.504 0.513 
29.20 22 43.53 22 47.94 22 

GMM(pr) -0 .006 0 .128 -0 .029 0 .054 -0 .023 0 .040 
-0 .117 0 .190 -0 .064 0 .096 -0 .043 0 .069 

22 .06 21  21 .58  21  21 .61  21 

-0.321 0.337 -0.080 0.092 -0.041 0.050 
-0.233 0.243 -0.081 0.091 -0.042 0.053 
54.45 52 57.47 52 56.42 52 

-0 .261 0 .281 -0 .035 0 .049 -0 .012 0 .025 
-0 .221 0 .236 -0 .053 0 .069 -0 .021 0 .038 

64 .11 58  68 .44  58  65 .95  58 
0.160 0.168 0.225 0.226 0.241 0.241 
0.014 0.130 0.193 0.207 0.233 0.241 
63.27 58 95.13 58 123.58 58 

GMM(ex) 0 .011 0 .179 -0 .021 0 .055 -0 .019 0 .036 
-0 .129 0 .212 -0 .039 0 .065 -0 .025 0 .045 

58 .39 57  57 .30  57  56 .85  57 

-0.012 0.079 -0.012 0.043 -0.009 0.031 
-0.070 0.134 -0.027 0.073 -0.017 0.053 
30.40 29 30.36 29 29.90 29 

0 .029 0 .077 0 .010 0 .037 0 .007 0 .027 
-0 .012 0 .142 -0 .003 0 .074 0 .004 0 .058 

39 .58 36  38 .85  36  37 .69  36 
0.263 0.266 0.248 0.248 0.237 0.237 

-0.026 0.191 0.244 0.274 0.398 0.410 
45.69 36 80.79 36 102.29 36 

PSM 0 .145 0 .155 0 .162 0 .165 0 .165 0 .167 
0 .197 0 .231 0 .210 0 .222 0 .216 0 .221 
0.115 0.127 0.131 0.135 0.134 0.136 
0.145 0.178 0.155 0.164 0.160 0.165 

0 .054 0 .075 0 .068 0 .073 0 .070 0 .073 
0 .063 0 .100 0 .068 0 .078 0 .071 0 .076 
0.027 0.059 0.039 0.047 0.040 0.044 

0.033 0.078 0.036 0.049 0.039 0.045 

rmse rmse rmse
Sargan df Sargan df Sargan df

γ
β
γ
β

GMM(qd) γ
β

GMM(qdcp) γ
β

GMM(qdcn) γ
β

γ
β

GMM(qe) γ
β

GMM(qecp) γ
β

GMM(qecn) γ
β

γ
β

GMM(sa) γ
β

GMM(sacp) γ
β

GMM(sacn) γ
β

γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50)

β(50)



Table 4 Monte Carlo results for LFM, T=8 (Negative binomial model)
=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 
2=0.5

See Notes of Tables.
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N=100 N=500 N=1000

bias bias bias

Level 0.143 0.157 0.159 0.163 0.159 0.161 
0.289 0.348 0.300 0.315 0.295 0.302 

WG -0 .221 0 .237 -0 .215 0 .220 -0 .216 0 .219 
-0 .136 0 .170 -0 .140 0 .148 -0 .144 0 .147 

-0.280 0.333 -0.106 0.133 -0.070 0.092 
-0.298 0.360 -0.153 0.186 -0.106 0.135 
18.67 16 18.88 16 18.00 16 

-0 .494 0 .515 -0 .434 0 .441 -0 .423 0 .427 
-0 .333 0 .422 -0 .287 0 .331 -0 .298 0 .322 

28 .57 22  58 .02  22  90 .16  22 
-0.016 0.077 -0.001 0.031 0.000 0.021 
-0.197 0.302 -0.071 0.123 -0.038 0.081 
24.79 22 25.79 22 25.67 22 

GMM(pr) -0 .006 0 .171 -0 .034 0 .084 -0 .035 0 .062 
-0 .180 0 .310 -0 .107 0 .157 -0 .083 0 .119 

22 .66 21  23 .27  21  23 .23  21 

-0.379 0.409 -0.119 0.136 -0.070 0.084 
-0.275 0.296 -0.118 0.134 -0.075 0.089 
54.72 52 57.63 52 57.57 52 

-0 .539 0 .557 -0 .452 0 .456 -0 .443 0 .446 
-0 .316 0 .337 -0 .259 0 .264 -0 .254 0 .256 

62 .03 58  94 .85  58  135 .30  58 
-0.090 0.123 -0.014 0.035 -0.006 0.022 
-0.181 0.248 -0.048 0.090 -0.026 0.056 
60.45 58 63.09 58 63.02 58 

GMM(ex) 0 .018 0 .231 -0 .016 0 .101 -0 .025 0 .064 
-0 .261 0 .425 -0 .112 0 .178 -0 .071 0 .100 

59 .24 57  62 .71  57  62 .74  57 

-0.068 0.133 -0.041 0.071 -0.032 0.052 
-0.174 0.242 -0.087 0.127 -0.059 0.092 
31.11 29 31.68 29 31.23 29 

-0 .444 0 .476 -0 .593 0 .603 -0 .638 0 .644 
0 .059 0 .273 -0 .069 0 .164 -0 .149 0 .182 
44 .30 36  114 .44  36  188 .60  36 
0.005 0.058 0.004 0.027 0.002 0.018 

-0.153 0.311 -0.073 0.142 -0.038 0.086 
39.12 36 41.62 36 41.75 36 

PSM 0 .078 0 .106 0 .098 0 .106 0 .099 0 .103 
0 .153 0 .265 0 .156 0 .173 0 .154 0 .164 
0.061 0.094 0.080 0.090 0.082 0.087 
0.115 0.189 0.121 0.138 0.120 0.130 

0 .025 0 .076 0 .042 0 .059 0 .044 0 .053 
0 .054 0 .134 0 .059 0 .083 0 .059 0 .072 
0.006 0.073 0.023 0.047 0.025 0.038 

0.027 0.118 0.033 0.064 0.032 0.051 

rmse rmse rmse
Sargan df Sargan df Sargan df

γ
β
γ
β

GMM(qd) γ
β

GMM(qdcp) γ
β

GMM(qdcn) γ
β

γ
β

GMM(qe) γ
β

GMM(qecp) γ
β

GMM(qecn) γ
β

γ
β

GMM(sa) γ
β

GMM(sacp) γ
β

GMM(sacn) γ
β

γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50)

β(50)



Notes of Tables
The number of replications is 1000. 
The instrument sets for GMM estimators include no time dummies.
The initial consistent estimates used for the GMM estimation are obtained in the framework of the 
way described in Kitazawa (2007).
The symbols “Sargan” and “df” denote the Monte Carlo mean of values of the Sargan statistic for 
each GMM estimator and its degree of freedom, respectively.
As for the PSM estimators, the figures in the parentheses next to   and   imply numbers of 
the latest  pre-sample periods used for the estimations.
The replications where no convergence is achieved in the estimations and/or where the estimates 
whose absolute values exceed 10 (the latter of which fairly infrequently arise in using the Level and 
PSM estimators)  are eliminated when calculating the values of the Monte Carlo statistics. Their 
rates are below 5 % in total for each experiment.
The values of the Monte Carlo bias and rmse exhibited in the tables are those obtained using the 
true values of    and    as the starting values in the optimization for each replication. The 
values of these statistics obtained using the true values are not much different from those obtained 
using two different types of the starting values. The differences are below about 0.01 in terms of the 
absolute value in nearly all cases and below about 0.02 in almost all cases, while the differences are 
greater than 0.02 (but below 0.08) when the values are stained.
The individuals  where  the  pre-sample  means  are  zero are  eliminated  in  each replication  when 
estimating the parameters of interest using the PSM estimator.
The Monte Carlo means of proportions of zeros for the count dependent variables are about 22 % in 
Tables 1 and 3 where where the DGP is of the Poisson model, while about 32 % in Table 2 and 4 
where the DGP is of the negative binomial model.
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