
Some additional moment conditions for a
dynamic count panel data model∗

Yoshitsugu Kitazawa†

December 17, 2007

Abstract

This paper proposes some additional moment conditions for the linear feed-

back model formulated in count panel data model, proposed by Blundell et al.

(2002). It is shown that the moment conditions based on the quasi-differenced

transformation proposed by Chamberlain (1992) and Wooldridge (1997) and

some additional moment conditions are derived by using a new operation

which the assumptions for disturbances underlie. Two kinds of the additional

moment conditions are conceptually equivalent to those proposed by Wind-

meijer (2000) and Crépon and Duguet (1997) in some regards. Some GMM

estimators are constructed using these moment conditions. The small sam-

ple performances for the GMM estimators are investigated with some Monte

Carlo experiments and it is shown that the GMM estimators perform well

when using the additional moment conditions, with minor exceptions.

Keywords: count panel data, linear feedback model, implicit operation, mo-

ment conditions, generalized method of moments, Monte Carlo experiments
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1 Introduction

Since the pioneering work conducted by Hausman et al. (1984), various models and

estimators are proposed for the purpose of dealing with count panel data (CPD).
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In many cases, the count panel data model is discussed under the assumption that

the number of time periods is small and the cross-sectional size is large and there-

fore asymptotics of the estimators for the model rely on the cross-sectional size. In

addition, the presence of the multiplicative fixed effect (whose logarithm is often con-

sidered to be correlated with the explanatory variables) makes it difficult to estimate

the parameters of interest consistently. At the time of foundation of the count panel

data model, the model incorporates no dynamics and therefore the Poisson condi-

tional maximum likelihood estimator (CMLE) proposed by Hausman et al. (1984)

is used as a consistent estimator under the assumption that the explanatory vari-

ables are strictly exogenous. The invention of the quasi-differenced transformation

conducted by Chamberlain (1992) and Wooldridge (1997) enables the researchers

to implement the consistent estimation of the count panel data model under the

assumption of predetermined explanatory variables by the assistance of the gener-

alized method of moments (GMM) estimator proposed by Hansen (1982), although

the small sample performance of this GMM estimator is not amply investigated in

the framework of econometric theory as well as in the framework of Monte Carlo

study.1 Using the count panel data without dynamics, some empirical applications

using the GMM based on the quasi-differenced transformation are conducted by Cin-

cera (1997), Crépon and Duguet (1997), Montalvo (1997), Blundell et al. (1999),

and Kim and Marschke (2005), with the intention of estimating the patent (and/or

innovation) production function.

Besides the implementation of the empirical applications above, an attractive

model incorporating a dynamics into the count panel data model is proposed by

Blundell, Griffith, and Windmeijer (2002), denoted by BGW hereafter, with the

aim of spelling over the possibility that the past count dependent variables have

an influence on the current count dependent variable. The linear feedback model

(LFM) grows out of the integer valued autoregressive model for the time series Pois-

son count model developed by Al-Osh and Alzaid (1987), McKenzie (1988), Alzaid

and Al-Osh (1990), and Jin-Guan and Yuan (1991). In the LFM, the lagged de-

pendent variables are included as additive regressors and therefore the problems

associated with the explosive dependent variables or the treatment of the zero val-

ued dependent variables can be circumvented.2 However, the estimators proposed

until now for the LFM are not satisfactory for the case where the number of individ-

1It is likely that the Monte Carlo study carried out by Windmeijer (2006) suggests the unattrac-
tiveness of the small sample property of this GMM estimator for the persistent explanatory vari-
ables.

2The alternative models incorporating the dynamics are proposed by Crépon and Duguet (1997)
and Blundell et al. (1999).
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uals is large but the number of time periods is small and therefore the asymptotics

for the estimators rely on the number of individuals. The Level estimator and the

within group (WG) estimator are inconsistent and therefore the presence of the

unignorable deviations endemic to the inconsistent estimators is founded as shown

in the Monte Carlo study by BGW. The generalized method of moments (GMM)

estimator based on the quasi-differenced transformation, which is an application of

the estimator proposed by Chamberlain (1992) and Wooldridge (1997) to the LFM,

is consistent but its small sample property is not favorable presumably due to the

problem of the weak instruments, which is shown in the Monte Carlo study by

BGW. The pre-sample mean (PSM) estimator proposed by Blundell et al. (1999)

and BGW is consistent and it has a good to excellent small sample property as

long as the relatively long history of the dependent variable is available for each

individual, the fixed effect composing the explanatory variable is proportional to

the fixed effect in the regression for each individual, and the (finite) moment gen-

erating functions of the disturbance terms composing the explanatory variables are

equal over time and for all individuals, but it is not necessarily probable that these

situations are arranged for many empirical applications. However, in late years,

challenges of empirical studies applying the GMM and/or PSM estimators to the

LFM are conducted where the data is used with large sizes of cross-section and/or

the results are examined with circumspection: In the investigation of factors in-

ducing the innovation of firms, Salomon and Shaver (2005) find that exporting is

positively associated with the product innovation and the patent application and

Uchida and Cook (2007) obtain the result that the competition has a positive effect

on innovation activities, while in the investigation of the relationship between the

outward foreign direct investment (FDI) by firms and productivity, Domijan et al.

(2007) find that more productive firms are more likely to invest in foreign affiliates.3

In this paper, some moment conditions for estimating the LFM consistently are

derived based on the structure of variance and covariance originating from the usage

of the conditional expectations for the disturbances and then the GMM estimators

are constructed using these moment conditions. The method of deriving the moment

conditions is referred to as the implicit operation. The two types of the conditional

expectations are used: that for the case of predetermined explanatory variables

and that for the case of strictly exogenous explanatory variables. These moment

conditions are composed of the moment conditions based on the quasi-differenced

transformations and the additional moment conditions akin to those for the the

3At the vanguard of these empirical studies, some applications of the GMM estimator to the
LFM whose form is different from that of BGW were carried out by Cincera (1997) and Blundell
et al. (1999) in 90’s.
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simple dynamic panel data model (DPDM) proposed by Ahn (1990) and Ahn and

Schmidt (1995) in a conceptual basis. Although the moment conditions based on

the quasi-differenced transformations in this paper are conceptually equivalent to

the moment conditions proposed by Chamberlain (1992) and Wooldridge (1997) and

the additional moment conditions proposed in this paper are conceptually equivalent

to the additional moment conditions proposed by Windmeijer (2000) and Crépon

and Duguet (1997), they are elaborated in the sense that moment conditions can

vary with the case whether the explanatory variable is predetermined or strictly

exogenous. Further, assuming the stationarity of the dependent variables and the

explanatory variables generates some moment conditions for estimating the LFM

consistently, and assuming the equidispersion of the dependent variables generates

some moment conditions for estimating the LFM consistently as well. The process

of deriving the moment conditions for the LFM has its origin in that for the simple

DPDM proposed by Ahn (1990) and Ahn and Schmidt (1995) and is decorated with

some improvements in order that all of the available moment conditions shall be able

to be exploited for the LFM. It is shown in some Monte Carlo experiments that the

GMM estimators constructed by additionally using the moment conditions newly

proposed in this paper perform well, compared with the GMM estimator based only

on the conventional quasi-differenced transformation.

The rest of the paper is organized as follows. Section 2 states one type of the

implicit operation of deriving the moment conditions for the simple dynamic panel

data model (DPDM), which is slightly different from the method proposed by Ahn

(1990) and Ahn and Schmidt (1995). Then, in section 3, the implicit operation is

applied to the linear feedback model for count panel data and the valid moment con-

ditions are derived for the four cases of predetermined explanatory variables, strictly

exogenous variables, mean-stationary dependent variables, and equidispersion. In

section 4, the GMM estimators are constructed using these moment conditions. In

section 5, some Monte Carlo experiments are carried out with the intention of in-

vestigating the small sample performances of the GMM estimators proposed newly

and comparing them with the conventional estimators proposed until now. Section

6 concludes.

2 Moment conditions for simple DPDM

The moment conditions for estimating the parameter of interest for the simple dy-

namic panel data model (DPDM) are constructed based on the structures of covari-

ances on the disturbances, the initial dependent variable, and the individual specific
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effect. This section introduces two methods of deriving the moment conditions for

the simple DPDM. One is the conventional method in line with Ahn (1990) and

Ahn and Schmidt (1995) and another is a new method (i.e. the implicit operation)

proposed in this paper. In the framework of the DPDM, the implicit operation is

described and compared with the conventional method, as a preparation for the

applications to the linear feedback model (LFM) in count panel data (CPD).

2.1 Simple DPDM

The simple DPDM is written as

yit = γyi,t−1 + ηi + vit, for t = 2, . . . , T , (2.1.1)

where the subscript i denotes the individual unit with i = 1, . . . , N , t denotes the

time period, yit is the dependent variable for individual i at time t, ηi is the individual

specific effect for individual i, vit is the disturbance for individual i at time t, and the

parameter of interest is γ. The discussion is conducted for the case where N → ∞
and T is fixed.

Equation (2.1.1) is also rewritten in an easily-viewable form as follows:

yit = γyi,t−1 + uit, for t = 2, . . . , T , (2.1.2)

uit = ηi + vit, for t = 2, . . . , T . (2.1.3)

Here, it is assumed that the following conditional moment conditions hold for vit

in (2.1.1):

E[vit | yi1, ηi, v
t−1
i ] = 0, for t = 2, . . . , T , (2.1.4)

where vt−1
i = (vi1, . . . , vi,t−1) with vi1 being the empty set for the sake of convenience.

The implication of (2.1.4) is that the DPDM (2.1.1) is written as the implicit form.

2.2 Conventional operation

The moment conditions for consistently estimating γ in (2.1.1) are constructed based

on the covariance structures among vit, between vit and ηi, and between vit and yi1.

Multiplying both sides of (2.1.4) by the variables in the information set (yi1, ηi, v
t−1
i )
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without any transformations generates the following conditional moment conditions:

E[yi1vit | yi1, ηi, v
t−1
i ] = 0, (2.2.1)

E[visvit | yi1, ηi, v
t−1
i ] = 0, for 2 ≤ s ≤ t − 1, (2.2.2)

E[ηivit | yi1, ηi, v
t−1
i ] = 0. (2.2.3)

Applying the law of total expectation to (2.2.1), (2.2.2), and (2.2.3), the following

unconditional moment conditions are generated:

E[yi1vit] = 0, (2.2.4)

E[visvit] = 0, for 2 ≤ s ≤ t − 1, (2.2.5)

E[ηivit] = 0. (2.2.6)

The unconditional moment conditions (2.2.4), (2.2.5), and (2.2.6) are nothing short

of the standard assumptions employed in Ahn (1990) and Ahn and Schmidt (1995).

The unconditional moment conditions (2.2.4), (2.2.5), and (2.2.6) say that yi1 and

vit are uncorrelated, that vit are serially uncorrelated, and that ηi and vit are uncor-

related, respectively. In this paper, the unconditional moment conditions (2.2.4),

(2.2.5), and (2.2.6) are specially called the explicit standard assumptions. The dy-

namic panel data model is discussed starting from the explicit standard assumptions

in many literatures.

Here, the consistent estimation of γ using the moment conditions (2.2.4), (2.2.5),

and (2.2.6) is impossible, because vit for t = 2, . . . , T and ηi are unobservable. Ac-

cordingly, it is necessary to construct the unconditional moment conditions using

the observable variables only, in order to estimate the parameter of interest γ consis-

tently, where the observable variables are defined as the variables written in terms of

data and parameters of interest. By replacing the unobservable variable vit in (2.2.4)

and (2.2.5) with the observable variables uit, the following unconditional moment

conditions (i.e. the observable analogues) are generated:

E[yi1uit] = E[yi1ηi], (2.2.7)

E[uisuit] = E[η2
i ], for 2 ≤ s ≤ t − 1, (2.2.8)

where (2.2.6) is additionally used to obtain (2.2.8). Then, the consistent estimation

of γ is conducted by utilizing the restrictions holing among the observable analogues

(2.2.7) and (2.2.8) corresponding to (2.2.4) and (2.2.5) respectively. That is, by

solving the relationships holding among E[yi1uit] for t = 2, . . . , T and E[uisuit] for

s = 2, . . . , t−1 and t = 3, . . . , T , the moment conditions for estimating γ consistently
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can be obtained. For now, it is advisable to note that by using the equality between

E[yi1uit] and E[yi1ui,t−1], the equality between E[uisuit] and E[uisui,t−1], and the

equality between E[ui,s−1uit] and E[uisuit], the following three types of the moment

conditions are constructed respectively:

E[yi1∆uit] = 0, (2.2.9)

E[uis∆uit] = 0, for 2 ≤ s ≤ t − 2, (2.2.10)

E[∆uisuit] = 0, for 3 ≤ s ≤ t − 1, (2.2.11)

where ∆uit = uit − ui,t−1.

However, the moment conditions (2.2.9), (2.2.10), and (2.2.11) are reformulated

more concisely. Firstly, creating the recursive equation

E[yis∆uit] = γE[yi,s−1∆uit] + E[uis∆uit], for 2 ≤ s ≤ t − 2, (2.2.12)

from (2.1.2) for t = s and then applying the initial condition (2.2.9) and the inno-

vation (2.2.10) to (2.2.12), the moment conditions (2.2.9) and (2.2.10) are in toto

reformulated as the following (T − 1)(T − 2)/2 moment conditions:

E[yis∆uit] = 0, for s = 1, . . . , t − 2; t = 3, . . . , T , (2.2.13)

which are linear with respect to the parameter of interest γ. That is, the moment

conditions (2.2.10) nonlinear with respect to γ are replaced by the linear moment

conditions (2.2.13) for 2 ≤ s ≤ t− 2 linear with respect to γ. Next, allowing for the

fact that some moment conditions in (2.2.11) are redundant when condensedly pre-

scribing the relationships holding among E[uisuit] for t ̸= s, the moment conditions

ruling out the redundancies in (2.2.11) are as follows:

E[∆ui,t−1uit] = 0, for t = 4, . . . , T , (2.2.14)

whose number is T − 3. That is, since the moment conditions (2.2.13) represent the

equalities holding between E[yi1uit] and E[yi1ui,t−1] for t = 3, . . . , T and between

E[uisuit] and E[uisui,t−1] for s = 2, . . . , t−2 and t = 4, . . . , T and the moment condi-

tions (2.2.14) represent the equalities holding between E[ui,t−2uit] and E[ui,t−1uit] for

t = 4, . . . , T , the other equalities holding among E[uisuit] for t ̸= s can be confirmed

immediately, only using (2.2.13) and (2.2.14).

As a result, the condensed full set of the moment conditions for estimating γ

consistently for the simple DPDM (2.1.1) under the assumptions (2.1.4) is composed
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of (2.2.13) and (2.2.14).

This operation is in line with that of Ahn (1990) and Ahn and Schmidt (1995).

The unconditional moment conditions (2.2.13) are proposed by Holtz-Eakin et al.

(1988) and Arellano and Bond (1991), which are called the standard moment con-

ditions, while the unconditional moment conditions (2.2.14) are proposed by Ahn

(1990) and Ahn and Schmidt (1995), which are called the additional nonlinear mo-

ment conditions.

2.3 Implicit operation

The moment conditions (2.2.13) and (2.2.14) can be obtained, starting from the as-

sumptions (2.2.1), (2.2.2), and (2.2.3) without using the explicit standard assump-

tions (2.2.4), (2.2.5), and (2.2.6). In this paper, the conditional moment conditions

(2.2.1), (2.2.2), and (2.2.3) are called the implicit standard assumptions, in contrast

to the explicit standard assumptions. The conditional moment conditions (2.2.1),

(2.2.2), and (2.2.3) say that yit and vit are uncorrelated conditional on (yi1, ηi, v
t−1
i ),

that vis for s < t and vit are uncorrelated conditional on (yi1, ηi, v
t−1
i ), and that ηi

and vit are uncorrelated conditional on (yi1, ηi, v
t−1
i ), respectively. Different from

the conventional operation, the observable analogues in this case are designed for

the conditional moment conditions (2.2.1) and (2.2.2) by replacing the unobservable

variable vit in the conditional moment conditions (2.2.1) and (2.2.2) with the ob-

servable variable uit. The observable analogues for (2.2.1) and (2.2.2) are as follows

respectively:

E[yi1uit | yi1, ηi, v
t−1
i ] = yi1ηi, (2.3.1)

E[uisuit | yi1, ηi, v
t−1
i ] = η2

i + visηi, for 2 ≤ s ≤ t − 1, (2.3.2)

where (2.2.3) is additionally used to obtain (2.3.2). It should be noted that the ob-

servable analogues (2.3.1) and (2.3.2) are able to be transformed into various forms

by using any transformations of the variables in the information set (yi1, ηi, v
t−1
i ).

Applying the law of total expectation to (2.3.1) and (2.3.2) generates (2.2.7) and

(2.2.8), where (2.2.6) for t = s is utilized. After these procedures, the same proce-

dures as in pervious subsection are implemented in order to derive the condensed

full set of the moment conditions for estimating γ consistently composed of (2.2.13)

and (2.2.14).

The concept of the implicit operation is that after making the observable ana-

logues conditional on the information set from the implicit standard assumptions,

the valid unconditional moment conditions are constructed from the relationships
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holding among the observable analogues transformed using the transformed vari-

ables in the information set. For the case of the DPDM, the implicit operation

generates the same results as the conventional operation and makes no significant

contribution. However, the implicit operation can be a powerful tool for constructing

the valid moment conditions, as will be seen in next section.

3 Moment conditions for LFM in CPD

In this section, some moment conditions are derived for the simple linear feedback

model (LFM) in count panel data (CPD), by using the implicit operation introduced

in previous section. The idea by Ahn (1990) and Ahn and Schmidt (1995) (which is

used for the DPDM) is woven into the derivation of the moment conditions, in the

sense that the moment conditions are constructed on the basis of the assumptions

on the structures of covariances between the initial dependent varable and the dis-

turbances, among the disturbances, and between the explanatory variables and the

disturbances and on the structures of variances of the disturbances.

3.1 LFM for CPD

The following simple linear feedback model (LFM) for count panel data (CPD) is

considered here:

yit = γyi,t−1 + exp(βxit + ηi) + vit, for t = 2, . . . , T , (3.1.1)

where the subscript i denotes the individual unit with i = 1, . . . , N , t denotes the

time period, yit is the count dependent variable whose value is zero or positive integer

for individual i at time t, xit is the explanatory variable for individual i at time t, ηi

is the individual specific effect for individual i, vit is the disturbance for individual i

at time t, and the parameters of interest are γ and β. The discussion is conducted

for the case where N → ∞ and T is fixed.

Equation (3.1.1) is also rewritten in an easily-viewable form as follows:

yit = γyi,t−1 + uit, for t = 2, . . . , T , (3.1.2)

uit = φiµit + vit, for t = 2, . . . , T , (3.1.3)

where φi = exp(ηi) and µit = exp(βxit).

For vit in equation (3.1.1), it is pertinent that when xit is predetermined, the
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following assumptions are made:

E[vit | yi1, ηi, v
t−1
i , xt

i] = 0, for t = 2, . . . , T , (3.1.4)

where vt−1
i = (vi1, . . . , vi,t−1) with vi1 being the empty set unless otherwise noted

and xt
i = (xi1, . . . , xit), while it is pertinent that when xit is strictly exogenous, the

following assumptions are made:

E[vit | yi1, ηi, v
t−1
i , xT

i ] = 0, for t = 2, . . . , T , (3.1.5)

where xT
i = (xi1, . . . , xiT ). The implication of (3.1.4) and (3.1.5) is that the LFM is

written as the implicit form.

3.2 Case of predetermined explanatory variables

In this case, the assumptions (3.1.4) are assumed. Multiplying both sides of (3.1.4)

by the variables in the information set conditioning vit (i.e. (yi1, ηi, v
t−1
i , xt

i)) without

any transformations generates the following conditional moment conditions

E[yi1vit | yi1, ηi, v
t−1
i , xt

i] = 0, (3.2.1)

E[visvit | yi1, ηi, v
t−1
i , xt

i] = 0, for 2 ≤ s ≤ t − 1, (3.2.2)

E[xisvit | yi1, ηi, v
t−1
i , xt

i] = 0, for 1 ≤ s ≤ t, (3.2.3)

E[ηivit | yi1, ηi, v
t−1
i , xt

i] = 0. (3.2.4)

From (3.2.1), (3.2.2), (3.2.3), and (3.2.4), the following unconditional moment con-

ditions are generated according to the manner of the conventional operation:

E[yi1vit] = 0, (3.2.5)

E[visvit] = 0, for 2 ≤ s ≤ t − 1, (3.2.6)

E[xisvit] = 0, for 1 ≤ s ≤ t, (3.2.7)

E[ηivit] = 0. (3.2.8)

The unconditional moment conditions (3.2.5), (3.2.6), (3.2.7), and (3.2.8) imply the

explicit standard assumptions in the LFM. The unconditional moment conditions

(3.2.5), (3.2.6), (3.2.7), and (3.2.8) say that yi1 and vit are uncorrelated uncondi-

tionally, that vit is serially uncorrelated unconditionally, that xis for s = 1, . . . , t and

vit are uncorrelated unconditionally, and that ηi and vit are uncorrelated uncondi-

tionally, respectively. It is impossible to conduct the consistent estimation of γ and
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β directly using the explicit standard assumptions, because vit for t = 2, . . . , T and

ηi are unobservable. By replacing the unobservable variable vit in (3.2.5), (3.2.6),

and (3.2.7) with the observable variable uit, the following observable analogues are

generated:

E[yi1uit] = E[yi1φiµit], (3.2.9)

E[uisuit] = E[φ2
i µisµit + visφiµit], for 2 ≤ s ≤ t − 1, (3.2.10)

E[xisuit] = E[xisφiµit], for 1 ≤ s ≤ t, (3.2.11)

which correspond to the unconditional moment conditions (3.2.5), (3.2.6), and

(3.2.7) respectively. The observable analogue (3.2.10) is derived by using

E[vitφiµis] = 0 for 2 ≤ s ≤ t which stems from the assumptions (3.1.4), instead

of (3.2.8).

However, the relationships are not found among E[yi1uit] for t = 2, . . . , T ,

E[uisuit] for s = 2, . . . , t − 1 and t = 3, . . . , T , and E[xisuit] for s = 1, . . . , t and

t = 2, . . . , T , as is clear from the moment conditions (3.2.9), (3.2.10), and (3.2.11).

That is, neither the equality nor any one of the other appropriate relationships

after ruling out the unobservable variables ηi and vit holds between E[yi1uit] and

E[yi1ui,t−1], between E[uisuit] and E[uisui,t−1], between E[uisuit] and E[ui,s−1uit], be-

tween E[xisuit] and E[xisui,t−1], and between E[xisuit] and E[xi,s−1uit]. Accordingly,

it is impossible to construct the unconditional moment conditions for estimating γ

and β consistently in the framework of the conventional operation. It will be seen

from the descriptions below that the implicit operation provides a powerful means

of solving this problem and deriving the unconditional moment conditions for esti-

mating γ and β consistently in the LFM for the CPD.

From now on, the implicit operation begins from the implicit standard assump-

tions (3.2.1), (3.2.2), (3.2.3), and (3.2.4). The conditional moment conditions (3.2.1),

(3.2.2), (3.2.3), and (3.2.4) say that yi1 and vit are uncorrelated conditional on

(yi1, ηi, v
t−1
i , xt

i) (i.e. the information set corresponding to the case of predeter-

mined explanatory variables), that vis for s = 2, . . . , t − 1 and vit are uncorrelated

conditional on (yi1, ηi, v
t−1
i , xt

i), that xis for s = 1, . . . , t and vit are uncorrelated

conditional on (yi1, ηi, v
t−1
i , xt

i), and that ηi and vit are uncorrelated conditional on

(yi1, ηi, v
t−1
i , xt

i), respectively. By replacing the unobservable variable vit in the con-

ditional moment conditions (3.2.1), (3.2.2), and (3.2.3) with the observable variable

uit, the the following observable analogues for (3.2.1), (3.2.2), and (3.2.3) are gen-
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erated:

E[yi1uit | yi1, ηi, v
t−1
i , xt

i] = yi1φiµit, (3.2.12)

E[uisuit | yi1, ηi, v
t−1
i , xt

i] = φ2
i µisµit + visφiµit, for 2 ≤ s ≤ t − 1, (3.2.13)

E[xisuit | yi1, ηi, v
t−1
i , xt

i] = xisφiµit, for 1 ≤ s ≤ t, (3.2.14)

where the observable analogues (3.2.12), (3.2.13), and (3.2.14) correspond to the

conditional moment conditions (3.2.1), (3.2.2), and (3.2.3), respectively. The ob-

servable analogue (3.2.13) is derived by using E[vitφiµis | yi1, ηi, v
t−1
i , xt

i] = 0 for

2 ≤ s ≤ t which stems from the assumption (3.1.4), instead of (3.2.4).

One of the advantages inherent to the implicit operation is that some properties

of conditional expectations are exploitable with effect for the observable analogues

(3.2.12), (3.2.13), and (3.2.14). After the transformations of the observable ana-

logues (3.2.12), (3.2.13), and (3.2.14) by using the properties of conditional expecta-

tions, the moment conditions for consistently estimating γ and β are obtained. The

idea used here is that the relationships holding among yi1uit for t = 2, . . . , T , uisuit

for s = 2, . . . , t − 1 and t = 3, . . . , T , and xisuit for s = 1, . . . , t and t = 2, . . . , T

weighted with the appropriate transformations of the explanatory variables are

solved through the intermediary of the unconditional expectation operator. The

concrete details are described hereinafter.

From the properties of conditional expectations, multiplying both sides of equa-

tions (3.2.12), (3.2.13), and (3.2.14) by µi,t−1/µit generates

E[yi1(µi,t−1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = yi1φiµi,t−1, (3.2.15)

E[uis(µi,t−1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = φ2
i µisµi,t−1 + visφiµi,t−1, (3.2.16)

for 2 ≤ s ≤ t − 1,

E[xis(µi,t−1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = xisφiµi,t−1, (3.2.17)

for 1 ≤ s ≤ t.

Firstly, the relationship through the intermediary of the unconditional expecta-

tion operator is solved between yi1uit weighted with µi,t−1/µit and yi1ui,t−1. That

is, the relationship between the transformed E[yi1uit] (i.e. E[yi1(µi,t−1/µit)uit]) and

E[yi1ui,t−1] is solved. Applying the law of total expectation to (3.2.12) and (3.2.15)

generates

E[yi1uit] = E[yi1φiµit], (3.2.18)

E[yi1(µi,t−1/µit)uit] = E[yi1φiµi,t−1]. (3.2.19)
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Subtracting (3.2.18) at t = t − 1 from (3.2.19) generates (for t = 3, . . . , T )

E[yi1((µi,t−1/µit)uit − ui,t−1)] = 0. (3.2.20)

Secondly, the relationship through the intermediary of the unconditional expec-

tation operator is solved between uisuit weighted with µi,t−1/µit and uisui,t−1. That

is, the relationship between the transformed E[uisuit] (i.e. E[uis(µi,t−1/µit)uit]) and

E[uisui,t−1] is solved. Applying the law of total expectation to (3.2.13) and (3.2.16)

generates

E[uisuit] = E[φ2
i µisµit + visφiµit], for 2 ≤ s ≤ t − 1, (3.2.21)

E[uis(µi,t−1/µit)uit] = E[φ2
i µisµi,t−1 + visφiµi,t−1], (3.2.22)

for 2 ≤ s ≤ t − 1.

Subtracting (3.2.21) at t = t − 1 from (3.2.22) generates (for t = 4, . . . , T )

E[uis((µi,t−1/µit)uit − ui,t−1)] = 0, for 2 ≤ s ≤ t − 2. (3.2.23)

At this stage, creating the recursive equation

E[yis((µi,t−1/µit)uit − ui,t−1)] = γE[yi,s−1((µi,t−1/µit)uit − ui,t−1)]

+E[uis((µi,t−1/µit)uit − ui,t−1)], (3.2.24)

for 2 ≤ s ≤ t − 2,

from (3.1.2) for t = s and then applying the initial condition (3.2.20) and the inno-

vation (3.2.23) to (3.2.24) according to the same manner as conducted in subsection

2.2, the moment conditions (3.2.20) and (3.2.23) are in toto reformulated as

E[yis((µi,t−1/µit)uit − ui,t−1)] = 0, for s = 1, . . . , t − 2; t = 3, . . . , T . (3.2.25)

The number of the moment conditions (3.2.25) is (T − 2)(T − 1)/2. It can be seen

that the order reduction with respect to γ is conducted in the moment conditions

(3.2.25) for 2 ≤ s ≤ t − 2 which are the replacement of (3.2.23).

Thirdly, the relationship through the intermediary of the unconditional expec-

tation operator is solved between xisuit weighted with µi,t−1/µit and xisui,t−1. That

is, the relationship between the transformed E[xisuit] (i.e. E[xis(µi,t−1/µit)uit]) and

E[xisui,t−1] is solved. Applying the law of total expectation to (3.2.14) and (3.2.17)
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generates

E[xisuit] = E[xisφiµit], for 1 ≤ s ≤ t, (3.2.26)

E[xis(µi,t−1/µit)uit] = E[xisφiµi,t−1], for 1 ≤ s ≤ t. (3.2.27)

Subtracting (3.2.26) at t = t − 1 from (3.2.27) generates

E[xis((µi,t−1/µit)uit − ui,t−1)] = 0, for s = 1, . . . , t − 1; t = 3, . . . , T . (3.2.28)

The number of the moment conditions (3.2.28) is (T − 1)T/2 − 1. The moment

conditions (3.2.28) are the moment conditions proposed by Chamberlain (1991) and

Wooldridge (1997) for a count panel data model without lagged dependent variables,

while the moment conditions (3.2.25) are their extension to the application to the

LFM in BGW.

Finally, the relationship through the intermediary of the unconditional expecta-

tion operator is solved between uisuit weighted with (µi,s−1/µis)(1/µit) and ui,s−1uit

weighted with 1/µit. That is, the relationship between the transformed E[uisuit] (i.e.

E[(µi,s−1/µis)uis(1/µit)uit]) and the transformed E[ui,s−1uit] (i.e. E[ui,s−1(1/µit)uit])

is solved. Multiplying both sides of (3.2.13) with 1/µit generates

E[uis(1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = φ2
i µis + visφi, for 2 ≤ s ≤ t − 1. (3.2.29)

Further, multiplying both sides of (3.2.29) by µi,s−1/µis generates

E[(µi,s−1/µis)uis(1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = φ2
i µi,s−1 + visφi(µi,s−1/µis),

for 3 ≤ s ≤ t − 1. (3.2.30)

Applying the law of total expectation to (3.2.29) and (3.2.30) generates

E[uis(1/µit)uit] = E[φ2
i µis], for 2 ≤ s ≤ t − 1, (3.2.31)

E[(µi,s−1/µis)uis(1/µit)uit] = E[φ2
i µi,s−1], for 3 ≤ s ≤ t − 1, (3.2.32)

where E[visφi] = 0 for 2 ≤ s ≤ T and E[visφi(µi,s−1/µis)] = 0 for 3 ≤ s ≤ T

are used for the derivation of (3.2.31) and (3.2.32) respectively, both of which stem

from (3.1.4) for t = s. Subtracting (3.2.31) at s = s− 1 from (3.2.32) generates (for

t = 4, . . . , T )

E[((µi,s−1/µis)uis − ui,s−1)(1/µit)uit] = 0, for 3 ≤ s ≤ t − 1. (3.2.33)

14



The moment conditions (3.2.23) and (3.2.33) represent a full set of the relationships

holding among uisuit for s = 2, . . . , t− 1 and t = 3, . . . , T through the intermediary

of the unconditional expectation operator after weighting uisuit with appropriate

transformations of explanatory variables, although some of the moment conditions

are redundant. Accordingly, the moment conditions ruling out the redundancies in

(3.2.33):

E[((µi,t−2/µi,t−1)ui,t−1 − ui,t−2)(1/µit)uit] = 0, for t = 4, . . . , T , (3.2.34)

whose number is T−3, and the moment conditions (3.2.23) are a condensed full set of

the moment conditions representing the relationships among uisuit for s = 2, . . . , t−1

and t = 3, . . . , T . That is, since the moment conditions (3.2.23) are obtained after

solving the relationships between uisuit (weighted with µi,t−1/µit) and uisui,t−1 for

s = 2, . . . , t−2 and t = 4, . . . , T , while the moment conditions (3.2.34) are obtained

after solving the relationships between ui,t−1uit (weighted with (µi,t−2/µi,t−1)(1/µit))

and ui,t−2uit (weighted with 1/µit) for t = 4, . . . , T , the moment conditions (3.2.23)

and (3.2.34) are the condensed full set in the sense that the other relationships

among uisuit for s = 2, . . . , t− 1 and t = 3, . . . , T are indirectly traced based on the

trunk connections by exploiting (3.2.23) and (3.2.34), where the appropriate trans-

formations of the explanatory variables and the unconditional expectation operator

are used on an as-needed basis.

No relationship between the transformed xisuit and xi,s−1uit was found through

the intermediary of the unconditional expectation operator.

The set of moment conditions (3.2.34) is a restrictive variant of the set of the

moment conditions (2) proposed by Windmeijer (2000), which is obtained under the

situation where the model has not the lagged dependent variables, the disturbance

is multiplicative, and the explanatory variable is allowed to be endogenous.4

Eventually, noting that the moment conditions (3.2.20) and (3.2.23) are in toto

reformulated into (3.2.25) and by adding the relationships holding between xisuit

weighted with µi,t−1/µit and xisui,t−1 for s = 1, . . . , t − 1 and t = 3, . . . , T through

the intermediary of the unconditional expectation operator, the condensed full set

4The alternative of the set of the moment conditions (3.2.34) in accordance with the manner of
Windmeijer (2000) is

E[((1/µi,t−1)ui,t−1 − (1/µi,t−2)ui,t−2)(1/µit)uit] = 0, for t = 4, . . . , T .

These moment conditions hold for the case of predetermined explanatory variables, but the moment
conditions (3.2.34) do not hold under the assumptions proposed by Windmeijer (2000). In this
sense, the moment conditions (3.2.34) are more restrictive than those constructed by Windmeijer
(2000).
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of the moment conditions is (3.2.25), (3.2.28), and (3.2.34) when the assumptions

(3.1.4) hold which imply that the explanatory variable xit is predetermined.

3.3 Case of strictly exogenous explanatory variables

In this case, the assumptions (3.1.5) are assumed. Multiplying both sides of (3.1.5)

by the variables in the information set conditioning vit (i.e. (yi1, ηi, v
t−1
i , xT

i )) without

any transformations generates the following conditional moment conditions:

E[yi1vit | yi1, ηi, v
t−1
i , xT

i ] = 0, (3.3.1)

E[visvit | yi1, ηi, v
t−1
i , xT

i ] = 0, for 2 ≤ s ≤ t − 1, (3.3.2)

E[xisvit | yi1, ηi, v
t−1
i , xT

i ] = 0, for 1 ≤ s ≤ T , (3.3.3)

E[ηivit | yi1, ηi, v
t−1
i , xT

i ] = 0. (3.3.4)

From (3.3.1), (3.3.2), (3.3.3), and (3.3.4), the following unconditional moment con-

ditions are generated according to the manner of the conventional operation:

E[yi1vit] = 0, (3.3.5)

E[visvit] = 0, for 2 ≤ s ≤ t − 1, (3.3.6)

E[xisvit] = 0, for 1 ≤ s ≤ T , (3.3.7)

E[ηivit] = 0. (3.3.8)

The explicit standard assumptions (3.3.5), (3.3.6), (3.3.7), and (3.3.8) say that yi1

and vit are uncorrelated unconditionally, that vit is serially uncorrelated uncondi-

tionally, that xis for s = 1, . . . , T and vit are uncorrelated unconditionally, and that

ηi and vit are uncorrelated unconditionally, respectively. The case of strictly exoge-

nous explanatory variables is characterized by the unconditional moment condition

(3.3.7). It is impossible to conduct the consistent estimation of γ and β directly

using the explicit standard assumptions due to the presence of the unobservable

variables vit and ηi. By replacing the unobservable variable vit in (3.3.5), (3.3.6),

and (3.3.7) with the observable variable uit, the following observable analogues are

generated:

E[yi1uit] = E[yi1φiµit], (3.3.9)

E[uisuit] = E[φ2
i µisµit], for 2 ≤ s ≤ t − 1, (3.3.10)

E[xisuit] = E[xisφiµit]. for 1 ≤ s ≤ T , (3.3.11)
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which correspond to the unconditional moment conditions (3.3.5), (3.3.6), and

(3.3.7), respectively. The observable analogue (3.3.10) is derived by using

E[vitφiµis] = 0 for 2 ≤ s ≤ T which stems from the assumptions (3.1.5), instead of

(3.3.8).

As is similar to the case of predetermined explanatory variables, no appropriate

relationship is found among E[yi1uit] for t = 2, . . . , T , E[uisuit] for 2 ≤ s ≤ t − 1

and t = 3, . . . , T , and E[xisuit] for 1 ≤ s ≤ T and t = 2, . . . , T , as is clear from

the moment conditions (3.3.9), (3.3.10), and (3.3.11). Accordingly, the implicit

operation as described below is also needed to obtain the unconditional moment

conditions for consistently estimating γ and β in this case.

As is similar to the case of predetermined explanatory variables, the implicit

operation begins from the implicit standard assumptions (3.3.1), (3.3.2), (3.3.3), and

(3.3.4), which say that yi1 and vit are uncorrelated conditional on (yi1, ηi, v
t−1
i , xT

i )

(i.e. the information set corresponding to the case of strictly exogenous explanatory

variables), that vis for s = 2, . . . , t − 1 and vit are uncorrelated conditional on

(yi1, ηi, v
t−1
i , xT

i ), that xis for s = 1, . . . , T and vit are uncorrelated conditional on

(yi1, ηi, v
t−1
i , xT

i ), and that ηi and vit are uncorrelated conditional on (yi1, ηi, v
t−1
i , xT

i ),

respectively. By replacing the unobservable variable vit in the conditional moment

conditions (3.3.9), (3.3.10), and (3.3.11) with the observable variable uit, the the

following observable analogues for (3.3.1), (3.3.2), and (3.3.3) are generated:

E[yi1uit | yi1, ηi, v
t−1
i , xT

i ] = yi1φiµit, (3.3.12)

E[uisuit | yi1, ηi, v
t−1
i , xT

i ] = φ2
i µisµit + visφiµit, for 2 ≤ s ≤ t − 1, (3.3.13)

E[xisuit | yi1, ηi, v
t−1
i , xT

i ] = xisφiµit, for 1 ≤ s ≤ T , (3.3.14)

which correspond to the conditional moment conditions (3.3.1), (3.3.2), and (3.3.3),

respectively. The observable analogue (3.3.13) is derived by using E[vitφiµis |
yi1, ηi, v

t−1
i , xT

i ] = 0 for 2 ≤ s ≤ T which stems from the assumptions (3.1.5),

instead of (3.3.4).

Along the lines of the implicit operation in previous subsection, the properties of

conditional expectations are applied to the conditional moment conditions (3.3.12),

(3.3.13), and (3.3.14) with the intention of obtaining the moment conditions for

consistently estimating γ and β. The idea used here is that the relationships holding

among yi1uit for t = 2, . . . , T , uisuit for s = 2, . . . , t − 1 and t = 3, . . . , T , and xisuit

for s = 1, . . . , T and t = 2, . . . , T weighted with the appropriate transformations of

the explanatory variables are solved through the intermediary of the unconditional

expectation operator.
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Since the explanatory variable xit is strictly exogenous, multiplying both sides

of equations (3.3.12), (3.3.13), and (3.3.14) by µi,t+1/µit can generates

E[yi1(µi,t+1/µit)uit | yi1, ηi, v
t−1
i , xT

i ] = yi1φiµi,t+1, (3.3.15)

E[uis(µi,t+1/µit)uit | yi1, ηi, v
t−1
i , xT

i ] = φ2
i µisµi,t+1 + visφiµi,t+1, (3.3.16)

for 2 ≤ s ≤ t − 1,

E[xis(µi,t+1/µit)uit | yi1, ηi, v
t−1
i , xT

i ] = xisφiµi,t+1, (3.3.17)

for 1 ≤ s ≤ T ,

where it should be noted that these forms of moment conditions cannot be obtained

when the explanatory variable xit is predetermined.

Firstly, the relationship through the intermediary of the unconditional expec-

tation operator is solved between yi1uit and yi1ui,t−1 weighted with µit/µi,t−1.

That is, the relationship between E[yi1uit] and the transformed E[yi1ui,t−1] (i.e.

E[yi1(µit/µi,t−1)ui,t−1]) is solved. Applying the law of total expectation to (3.3.12)

and (3.3.15) generates

E[yi1uit] = E[yi1φiµit], (3.3.18)

E[yi1(µi,t+1/µit)uit] = E[yi1φiµi,t+1]. (3.3.19)

Subtracting (3.3.19) at t = t − 1 from (3.3.18) generates (for t = 3, . . . , T )

E[yi1(uit − (µit/µi,t−1)ui,t−1)] = 0. (3.3.20)

Secondly, the relationship through the intermediary of the unconditional ex-

pectation operator is solved between uisuit and uisui,t−1 weighted with µit/µi,t−1.

That is, the relationship between E[uisuit] and the transformed E[uisui,t−1] (i.e.

E[uis(µit/µi,t−1)ui,t−1]) is solved. Applying the law of total expectation to (3.3.13)

and (3.3.16) generates

E[uisuit] = E[φ2
i µisµit], for 2 ≤ s ≤ t − 1, (3.3.21)

E[uis(µi,t+1/µit)uit] = E[φ2
i µisµi,t+1], for 2 ≤ s ≤ t − 1, (3.3.22)

where E[visφiµit] = 0 for 2 ≤ s ≤ T stemming from (3.1.5) is used for the derivation

of (3.3.21) and (3.3.22). Subtracting (3.3.22) at t = t − 1 from (3.3.21) generates

(for t = 4, . . . , T )

E[uis(uit − (µit/µi,t−1)ui,t−1)] = 0, for 2 ≤ s ≤ t − 2. (3.3.23)
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According to the same manner of creating the recursive equation as in previous

subsection, the moment conditions (3.3.20) and (3.3.23) are in toto reformulated as

E[yis(uit − (µit/µi,t−1)ui,t−1)] = 0, for s = 1, . . . , t − 2; t = 3, . . . , T . (3.3.24)

The number of the moment conditions (3.3.24) is (T − 2)(T − 1)/2.

Thirdly, the relationship through the intermediary of the unconditional ex-

pectation operator is solved between xisuit and xisui,t−1 weighted with µit/µi,t−1.

That is, the relationship between E[xisuit] and the transformed E[xisui,t−1] (i.e.

E[xis(µit/µi,t−1)ui,t−1]) is solved. Applying the law of total expectation to (3.3.14)

and (3.3.17) generates

E[xisuit] = E[xisφiµit], for 1 ≤ s ≤ T , (3.3.25)

E[xis(µi,t+1/µit)uit] = E[xisφiµi,t+1], for 1 ≤ s ≤ T . (3.3.26)

Subtracting (3.3.26) at t = t − 1 from (3.3.25) generates

E[xis(uit − (µit/µi,t−1)ui,t−1)] = 0, for s = 1, . . . , T ; t = 3, . . . , T . (3.3.27)

The number of the moment conditions (3.3.27) is (T − 2)T .

It should be noted that for the case of strictly exogenous explanatory variables

the moment conditions (3.2.25) and (3.2.28) are valid, while for the case of predeter-

mined explanatory variables the moment conditions (3.3.24) are not valid and the

moment conditions (3.3.27) are not also valid even when the instrument variables

xis for s = 1, . . . , t are used for the transformed equation uit − (µit/µi,t−1)ui,t−1 in

(3.3.27).

Finally, the relationship through the intermediary of the unconditional expec-

tation operator is solved between uisuit and ui,s−1uit weighted with µis/µi,s−1.

That is, the relationship between E[uisuit] and the transformed E[ui,s−1uit] (i.e.

E[(µis/µi,s−1)ui,s−1uit]) is solved. Multiplying both sides of (3.3.13) by µi,s+1/µis

E[(µi,s+1/µis)uisuit | yi1, ηi, v
t−1
i , xT

i ] = φ2
i µi,s+1µit + visφi(µi,s+1/µis)µit,

for 2 ≤ s ≤ t − 1. (3.3.28)

Applying the law of total expectation to (3.3.13) and (3.3.28),

E[uisuit] = E[φ2
i µisµit], for 2 ≤ s ≤ t − 1, (3.3.29)

E[(µi,s+1/µis)uisuit] = E[φ2
i µi,s+1µit], for 2 ≤ s ≤ t − 1, (3.3.30)
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where (3.3.29) and (3.3.30) are obtained by using E[visφiµit] = 0 for 2 ≤ s ≤ T and

E[visφi(µi,s+1/µis)] = 0 for 2 ≤ s ≤ T − 1 respectively, both of which stem from

(3.1.5). Subtracting (3.3.30) at s = s − 1 from (3.3.29) generates (for t = 4, . . . , T )

E[(uis − (µis/µi,s−1)ui,s−1)uit] = 0, for 3 ≤ s ≤ t − 1. (3.3.31)

It should be noted that the moment conditions (3.2.33) are valid for the case of

strictly exogenous explanatory variables, while the moment conditions (3.3.31) are

not valid for the case of predetermined explanatory variables.

The moment conditions (3.3.23) and (3.3.31) represent a full set of the rela-

tionships holding among uisuit for s = 2, . . . , t − 1 and t = 3, . . . , T through the

intermediary of the unconditional expectation operator after weighting uisuit with

the appropriate transformations of explanatory variables, although some of the mo-

ment conditions are redundant. The moment conditions ruling out the redundancies

in (3.3.31):

E[(ui,t−1 − (µi,t−1/µi,t−2)ui,t−2)uit] = 0, for t = 4, . . . , T , (3.3.32)

whose number is T−3, and the moment conditions (3.3.23) are a condensed full set of

the moment conditions representing the relationships among uisuit for s = 2, . . . , t−1

and t = 3, . . . , T . The reason why the moment conditions (3.3.23) and (3.3.32)

are the condensed full set is conceptually the same as that described in previous

subsection.

No relationship between the transformed xisuit and xi,s−1uit was found through

the intermediary of the unconditional expectation operator.

Eventually, based on the reason similar to that described in previous subsection,

the condensed full set of the moment conditions is (3.3.24), (3.3.27), and (3.3.32),

when the assumptions (3.1.5) hold which imply that xit is strictly exogenous.

When γ is set to be zero, the set of the moment conditions (3.3.24) and (3.3.32) is

conceptually equivalent to the set of the moment conditions generated after applying

the law of total expectation to (22) and (23) in Crépon and Duguet (1997).5

5According to the idea of Crépon and Duguet (1997), it is conceivable that the moment condi-
tions (3.3.24) and (3.3.32) are replaced by (3.2.25) and

E[((µi,t−2/µit)uit − ui,t−2)ui,t−1] = 0, for t = 4, . . . , T ,

when both γ and β are estimated jointly. The former moment conditions are derived from the
relationships stated in subsection 3.2, while the latter moment conditions are derived from the
relationships holding between ui,t−1uit weighted with µi,t−2/µit and ui,t−2ui,t−1 through the in-
termediary of the unconditional expectation operator.
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3.4 Case of mean-stationary dependent variables

In this case, the stationarity of the dependent variable and the explanatory vari-

able is additively assumed for the LFM (3.1.1). The discussion is conducted, just

confined to the case of predetermined explanatory variables, that is, just under the

assumption (3.1.4). The moment conditions obtained under the assumption of the

stationarity in the LFM, referred to as the stationarity moment conditions here-

after, are of the form different from those proposed by Arellano and Bover (1995)

and discussed by Ahn and Schmidt (1995) and Blundell and Bond (1998) for the

case of the DPDM.

The discussion is conducted on the stationarity of the explanatory variable as-

sumed in this subsection. The explanatory variable xit can be said to be stationary

in the sense that its moment generating function conditional on the fixed effect ηi

is equal over time, when the following relationships hold for xit:

E[exp(kxit) | ηi] = E[ϕi(k) | ηi], for t = 1, . . . , T , (3.4.1)

where k is any real value and ϕi(k) is a function of k varying with individual i but

being constant over time. From (3.4.1), the the following relationships among the

unconditional moment conditions are obtained:

E[f(ηi) exp(kxit)] = E[f(ηi)ϕi(k)], for t = 1, . . . , T , (3.4.2)

where f(ηi) is any function of ηi and accordingly f(ηi)ϕi(k) is constant over time.

Accordingly, from (3.4.2) with k = β, the following relationships are obtained:

E[f(ηi)µit] = E[f(ηi)ϕi(β)], for t = 1, . . . , T . (3.4.3)

It is seen from the descriptions above that the relationships (3.4.3) hold under the

assumptions (3.4.1).

Added to the above, the assumption is imposed on the initial condition of the

count dependent variable as follows. That is, it is assumed that the initial condition

of the count dependent variable yi1 is described as

yi1 = (1/(1 − γ))φiµi1 + vi1, (3.4.4)

where µi1 = exp(βxi1) and the unobservable variable vi1 satisfies

E[vi1 | ηi, xi1] = 0. (3.4.5)
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When the explanatory variable xit is stationary in the sense that the relationships

(3.4.1) hold and the initial condition of the count dependent variable yi1 is written

as (3.4.4) with (3.4.5), the count dependent variable yit is mean-stationary. This is

because in the setting above,

E[yit] = (1/(1 − γ))E[φiϕi(β)], for t = 1, . . . , T , (3.4.6)

which are obtained by using the driving process of (3.1.1), the relationships (3.4.3)

with f(ηi) = φi being specified, and E[vit] = 0 for t = 1, . . . , T obtained after

applying the law of total expectation to (3.4.5) and (3.1.4). In other word, equation

(3.4.6) implies that means of yit are equal over time.

Based on the assumptions mentioned above, the moment conditions related to

the stationarity of yit and xit are contrived.

Firstly, the stationarity moment conditions are derived with respect to the de-

pendent variable yit, when yit is mean-stationary. The relationship through the

intermediary of the unconditional expectation operator is solved between yi1uit

weighted with (1 − γ)(1/µit) and ui2uit weighted with 1/µit and the relationship

through the intermediary of the unconditional expectation operator is solved be-

tween uisuit weighted with 1/µit and ui,s−1uit weighted with 1/µit. That is, the

relationships between the transformed E[yi1uit] (i.e. (1−γ)E[yi1(1/µit)uit]) and the

transformed E[ui2uit] (i.e. E[ui2(1/µit)uit]) and between the transformed E[uisuit]

(i.e. E[uis(1/µit)uit]) and the transformed E[ui,s−1uit] (i.e. E[ui,s−1(1/µit)uit]) are

solved. From now on, these relationships are solved in a phased manner, in the

framework of the implicit operation.

In this case, the moment conditions (3.2.12) is rewritten as

E[yi1uit | yi1, ηi, v
t−1
i , xt

i] = (1/(1 − γ))φ2
i µi1µit + vi1φiµit, (3.4.7)

by plugging (3.4.4) into (3.2.12). Multiplying both sides of (3.4.7) by 1/µit generates

E[yi1(1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = (1/(1 − γ))φ2
i µi1 + vi1φi. (3.4.8)

Applying the law of total expectation to (3.4.8),

E[yi1(1/µit)uit] = (1/(1 − γ))E[φ2
i ϕi(β)], (3.4.9)

where the relationships (3.4.3) with f(ηi) = φ2
i at t = 1 and the assumption (3.4.5)

are used.
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Further, in this case, by using (3.4.3) with f(ηi) = φ2
i , (3.2.31) is rewritten as

E[uis(1/µit)uit] = E[φ2
i ϕi(β)], for 2 ≤ s ≤ t − 1. (3.4.10)

Subtracting (3.4.9) multiplied by 1 − γ from (3.4.10) at s = 2, the relationship

holding between yi1uit (weighted with (1 − γ)(1/µit)) and ui2uit (weighted with

1/µit) through the intermediary of the unconditional expectation operator is solved

as follows:

E[∆yi2(1/µit)uit] = 0, (3.4.11)

where (3.1.2) for t = 2 is used and ∆yi2 = yi2 − yi1.

Further, subtracting (3.4.10) at s = s − 1 from (3.4.10), the relationship be-

tween uisuit (weighted with 1/µit) and ui,s−1uit (weighted with 1/µit) through the

intermediary of the unconditional expectation operator is solved as follows:

E[∆uis(1/µit)uit] = 0, for 3 ≤ s ≤ t − 1, (3.4.12)

where ∆uis = uis − ui,s−1.

At this stage, creating the recursive equation

E[∆yis(1/µit)uit] = γE[∆yi,s−1(1/µit)uit] + E[∆uis(1/µit)uit], (3.4.13)

for 3 ≤ s ≤ t − 1,

from (3.1.2) for t = s and then applying the initial condition (3.4.11) and the

innovation (3.4.12) to (3.4.13), the moment conditions (3.4.11) and (3.4.12) are in

toto reformulated as

E[∆yis(1/µit)uit] = 0, for 2 ≤ s ≤ t − 1, (3.4.14)

where ∆yis = yis − yi,s−1, for t = 3, . . . , T . It can be seen that the order reduction

with respect to γ is conducted in the moment conditions (3.4.14) for 3 ≤ s ≤ t − 1

which are the replacement of (3.4.12).

When the dependent variable and the explanatory variable satisfy the station-

arity under the assumptions of predetermined explanatory variables, the set of the

moment conditions (3.2.25) and (3.4.14) represents a full set of the relationships

holding among yi1uit for t = 2, . . . , T and uisuit for s = 2, . . . , t− 1 and t = 3, . . . , T

through the intermediary of the unconditional expectation operator after weight-

ing yi1uit and uisuit with the appropriate transformations of explanatory variables,

although some of the moment conditions are redundant. The moment conditions
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ruling out the redundancies in (3.4.14):

E[∆yi,t−1(1/µit)uit] = 0, for t = 3, . . . , T , (3.4.15)

whose number is T − 2, and the moment conditions (3.2.25) are a condensed full

set of the moment conditions representing the relationships holding among yi1uit

for t = 2, . . . , T and uisuit for s = 2, . . . , t − 1 and t = 3, . . . , T . The reason why

the moment conditions (3.2.25) and (3.4.15) are the condensed full set is almost

similar to that described in subsection 3.2. Since the moment conditions (3.2.25) are

obtained after solving the relationships between yi1uit (weighted with µi,t−1/µit) and

yi1ui,t−1 for t = 3, . . . , T and between uisuit (weighted with µi,t−1/µit) and uisui,t−1

for s = 2, . . . , t − 2 and t = 4, . . . , T , while the moment conditions (3.4.15) are

obtained after solving the relationships between yi1ui3 (weighted with (1−γ)(1/µi3))

and ui2ui3 (weighted with 1/µi3) and between ui,t−1uit (weighted with 1/µit) and

ui,t−2uit (weighted with 1/µit) for t = 4, . . . , T , the moment conditions (3.2.25) and

(3.4.15) are the condensed full set in the sense that the other relationships among

yi1uit for t = 2, . . . , T and uisuit for s = 2, . . . , t − 1 and t = 3, . . . , T are indirectly

traced based on the trunk connections by exploiting (3.2.25) and (3.4.15).

Secondly, the stationarity moment conditions are derived with respect to the ex-

planatory variable xit, when xit is stationary in the sense that its moment generating

function is equal over time as implied by the assumptions (3.4.1). Two alternative

types of the stationarity moment conditions with respect to xit are obtained when

xit is predetermined as implied by the assumptions (3.1.4)

From now on, the process of deriving one type of the stationarity moment con-

ditions with respect to xit is shown. For s ≤ t, the relationship through the inter-

mediary of the unconditional expectation operator is solved between xisuit weighted

with 1/µit and xi,s−1uit weighted with 1/µit. That is, the relationship between the

transformed E[xisuit] (i.e. E[xis(1/µit)uit]) and the transformed E[xi,s−1uit] (i.e.

E[xi,s−1(1/µit)uit]) is solved. More specifically, assuming the stationarity of xit, the

relationship holding between the transformed xisuit and xi,s−1uit through the inter-

mediary of the unconditional expectation operator is obtained, which is unable to

be obtained in subsection 3.2. Multiplying both sides of (3.2.14) by 1/µit generates

E[xis(1/µit)uit | yi1, ηi, v
t−1
i , xt

i] = xisφi, for 1 ≤ s ≤ t. (3.4.16)

Applying the law of total expectation to (3.4.16), the following relationship is gen-

erated:

E[xis(1/µit)uit] = E[xisφi], for 1 ≤ s ≤ t. (3.4.17)
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In addition, differentiating (3.4.2) with respect to k, the following relationships are

obtained:

E[f(ηi)xit exp(kxit)] = E[f(ηi)ϕ
′
i(k)], for t = 1, . . . , T , (3.4.18)

where ϕ′
i(k) = dϕi(k)/dk and accordingly f(ηi)ϕ

′
i(k) is constant over time. From

(3.4.17) and (3.4.18) with t = s, k = 0, and f(ηi) = φi, the following relationship is

obtained:

E[xis(1/µit)uit] = E[ϕ′
i(0)φi], for 1 ≤ s ≤ t, (3.4.19)

where ϕ′
i(0) = (dϕi(k)/dk)|k=0. From (3.4.19), the following unconditional moment

conditions are obtained (for t = 2, . . . , T ):

E[∆xis(1/µit)uit] = 0, for 2 ≤ s ≤ t, (3.4.20)

where ∆xis = xis − xi,s−1. When the explanatory variables satisfy the stationar-

ity under the assumptions of predetermined explanatory variables, the set of the

moment conditions (3.2.28) and (3.4.20) represents a full set of the relationships

holding among xisuit for s = 1, . . . , t and t = 2, . . . , T through the intermediary

of the unconditional expectation operator after weighting xisuit with the appro-

priate transformations of the explanatory variables, although some of the moment

conditions are redundant.6 The moment conditions ruling out the redundancies in

(3.4.20):

E[∆xit(1/µit)uit] = 0, for t = 2, . . . , T , (3.4.21)

whose number is T−1, and (3.2.28) are a condensed full set of the moment conditions

representing the relationships among xisuit for s = 1, . . . , t and t = 2, . . . , T . Since

the moment conditions (3.2.28) are obtained after solving the relationships between

xisuit (weighted with µi,t−1/µit) and xisui,t−1 for s = 1, . . . , t − 1 and t = 3, . . . , T ,

while the moment conditions (3.4.21) are obtained after solving the relationships

between xituit weighted with 1/µit and xi,t−1uit weighted with 1/µit for t = 2, . . . , T ,

the moment conditions (3.2.28) and (3.4.21) are the condensed full set in the sense

that the other relationships among xisuit for s = 1, . . . , t and t = 2, . . . , T are

indirectly traced based on the trunk connections by exploiting (3.2.28) and (3.4.21).

From here, the process of deriving another type of the stationarity moment

conditions with respect to xit is shown. The relationship through the intermediary of

the unconditional expectation operator is solved between xituit and xi,t−1ui,t−1. That

6It should be noted that the mean-stationarity of the dependent variable is not needed to derive
the moment conditions (3.4.20).
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is, the relationship between E[xituit] and E[xi,t−1ui,t−1] is solved. The unconditional

moment condition (3.2.26) for s = t is

E[xituit] = E[xitφiµit]. (3.4.22)

From (3.4.22) and (3.4.18) with k = β and f(ηi) = φi, the following relationship is

obtained:

E[xituit] = E[ϕ′
i(β)φi], (3.4.23)

where ϕ′
i(β) = (dϕi(k)/dk)|k=β. Taking the first-difference of (3.4.23), the following

T − 2 unconditional moment conditions are obtained:

E[xituit − xi,t−1ui,t−1] = 0, for t = 3, . . . , T , (3.4.24)

whose number is T − 2.7 For t = 3, . . . , T , the moment conditions (3.4.24) are

equivalent to (3.4.21) conceptually. The moment conditions (3.4.24) are the only

set of the moment conditions linear with respect to the parameters of interest in the

sets constructed for the LFM until now, which are used only for the estimation of γ

and hold irrespective of any values of β.

Eventually, when the dependent variable and the explanatory variable satisfy the

stationarity under the assumptions of predetermined explanatory variables (that is,

when (3.4.1) and (3.4.4) with (3.4.5) hold for the model (3.1.1) with (3.1.4)), it

follows that one set of the moment conditions used for consistently estimating γ

and β is composed of (3.2.25), (3.4.15), (3.2.28), and (3.4.21), while another set is

composed of (3.2.25), (3.4.15), (3.2.28), (3.4.21) for t = 2, and (3.4.24).

3.5 Case of equidispersion

In the model (3.1.1), the equality between mean and variance of the dependent

variable yit is referred to as equidispersion, which is characteristic of the dependent

variable yit distributed as Poisson. The moment conditions associated with equidis-

persion for the LFM in CPD are derived for the following three cases: the case

of predetermined explanatory variables, the case of strictly exogenous explanatory

variables, and the case of stationary explanatory variables.

Firstly, the consideration is conducted for the case of predetermined explana-

tory variables. In the model (3.1.1) with (3.1.4), the equidispersion is additionally

7It should be noted that the mean-stationarity of the dependent variable is not needed to derive
the moment conditions (3.4.24).
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formulized as follows:

E[(v2
it − yit) | yi1, ηi, v

t−1
i , xt

i] = 0, (3.5.1)

for t = 2, . . . , T . For the case of predetermined explanatory variables, it is postulated

that (3.5.1) is the implicit assumption added to the implicit standard assumptions

(3.2.1), (3.2.2), (3.2.3), and (3.2.4). The implicit operation is implemented from now

on to obtain the moment conditions for estimating γ and β consistently. Since vit

is unobservable and therefore v2
it − yit is also unobservable, the observable analogue

for equation (3.5.1) is constructed by replacing vit with the observable variable uit

as follows:

E[(u2
it − yit) | yi1, ηi, v

t−1
i , xt

i] = φ2
i µ

2
it, (3.5.2)

where E[vitφiµit | yi1, ηi, v
t−1
i , xt

i] = 0 stemming from (3.1.4) is used which is a proxy

for (3.2.4). Multiplying both sides of (3.5.2) by µ2
i,t−1/µ

2
it generates

E[(µ2
i,t−1/µ

2
it)(u

2
it − yit) | yi1, ηi, v

t−1
i , xt

i] = φ2
i µ

2
i,t−1. (3.5.3)

Applying the law of total expectation to (3.5.2) and (3.5.3), it follows that

E[(u2
it − yit)] = E[φ2

i µ
2
it], (3.5.4)

E[(µ2
i,t−1/µ

2
it)(u

2
it − yit)] = E[φ2

i µ
2
i,t−1]. (3.5.5)

Subtracting (3.5.4) at t = t − 1 from (3.5.5) generates the following unconditional

moment conditions for estimating γ and β consistently:

E[(µ2
i,t−1/µ

2
it)(u

2
it − yit) − (u2

i,t−1 − yi,t−1)] = 0, for t = 3, . . . , T , (3.5.6)

whose number is T − 2.

Next, a mention in passing is conducted when the explanatory variable xit is

strictly exogenous. In the model (3.1.1) with (3.1.5), the equidispersion is addition-

ally formulized as follows:

E[(v2
it − yit) | yi1, ηi, v

t−1
i , xT

i ] = 0, (3.5.7)

for t = 2, . . . , T . For the case of strictly exogenous explanatory variables, it is

postulated that (3.5.7) is the implicit assumption added to the implicit standard

assumptions (3.3.1), (3.3.2), (3.3.3), and (3.3.4). Based on (3.5.7) and mimicking

the process of deriving (3.5.6), the following unconditional moment conditions are
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derived for estimating γ and β consistently:

E[(u2
it − yit) − (µ2

it/µ
2
i,t−1)(u

2
i,t−1 − yi,t−1)] = 0, for t = 3, . . . , T , (3.5.8)

whose number is T − 2. It should be noted that under (3.1.5) and (3.5.7), the

moment conditions (3.5.6) hold as well.

Further, when the explanatory variable xit is assumed to be stationary in the

sense that its moment generating function is equal over time in addition to the

assumption that xit is predetermined, the moment conditions associated with the

equidispersion to be obtained are of the form different from (3.5.6). In this case,

the relationships (3.4.1) hold for xit and therefore the relationships (3.4.2) hold.

Specifying that f(ηi) = φ2
i and k = 2β in (3.4.2), the following relationships are

obtained:

E[φ2
i µ

2
it] = E[φ2

i ϕi(2β)], for t = 1, . . . , T . (3.5.9)

Accordingly, using (3.5.9), (3.5.4) is rewritten as

E[(u2
it − yit)] = E[φ2

i ϕi(2β)]. (3.5.10)

Taking the first-difference of (3.5.10), the following unconditional moment conditions

are obtained for estimating γ consistently:

E[∆uit(uit + ui,t−1) − ∆yit] = 0, for t = 3, . . . , T , (3.5.11)

whose number is T − 2. The moment conditions (3.5.11) hold irrespective of any

values of β.

It is also possible to say that the moment conditions (3.5.6), (3.5.8), and (3.5.11)

represent the relationships holding among u2
it for t = 2, . . . , T transformed with the

appropriate transformations of the dependent and explanatory variables through the

intermediary of the unconditional expectation operator. Accordingly, the moment

conditions (3.5.6), (3.5.8), and (3.5.11) in the LFM for CPD can be regarded as those

associated with the variance of the disturbance, as is the case with the intertemporal

homoscedasticity moment conditions for the DPDM which are proposed by Ahn

(1990) and Ahn and Schmidt (1995).

3.6 Discussion

A manipulation is needed to use any of the moment conditions (3.2.34), (3.4.15), and

(3.4.21) for the estimation of γ and β in the LFM. If all values of the explanatory
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variable xit are positive, the estimate of β using any of the moment conditions

(3.2.34), (3.4.15), and (3.4.21) seems to be in danger of going to infinity. Then, the

utilization of the explanatory variable with its all values being positive is a banality

in the econometric analysis.8 The breakthrough by Windmeijer (2000) is available

when using the moment conditions (3.2.34), (3.4.15), and (3.4.21), where instead of

xit, x̃it = xit − (1/(N T ))
∑N

i=1

∑T
t=1 xit (i.e. the explanatory variable transformed

in deviation from its overall mean) is used. It is convinced that x̃it contains both

positive and negative values.

4 GMM estimators for LFM

Using the unconditional moment conditions derived in previous section, the GMM

estimators for consistently estimating γ and β in the simple LFM (3.1.1) are con-

structed for the cases of predetermined explanatory variables, strictly exogenous

explanatory variables, and mean-stationary dependent variables. In this section,

these GMM estimators are presented.

4.1 GMM(qd) estimator

A conventional GMM estimator for the case of predetermined explanatory variables

(i.e. for the model (3.1.1) with (3.1.4)) is the quasi-differenced GMM estimator

proposed by Chamberlain (1992) and Wooldridge (1997). In this paper, this esti-

mator is referred to as the GMM(qd) estimator. When the GMM(qd) estimator is

constructed, the moment conditions (3.2.25) and (3.2.28) are used.

After defining the quasi-differenced transformations

pit = (µi,t−1/µit)uit − ui,t−1, for t = 3, . . . , T ,

the GMM(qd) estimator for the parameter vector θ = [γ β]′ is obtained by minimiz-

ing the following criterion function with respect to θ:(
(1/N)

N∑
i=1

ϵqd
i

′
Zqd

i

)
W qd

N

(
(1/N)

N∑
i=1

Zqd
i

′
ϵqd
i

)
, (4.1.1)

where the column vector ϵqd
i = pi with pi = [pi3 pi4 · · · piT ]′ being a (T − 2) column

8If the variable xit + xi,t−1 − xi,t−2 contains both positive and negative values, the estimate of
β using the moment conditions (3.2.34) may not be in danger of going to infinity, even if all values
of xit are positive. However, such a situation would be rare.
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vector, the matrix

Zqd
i =

[
Ai Bi

]
with

Ai =


yi1 0 0 · · · 0 0 · · · 0

0 yi1 yi2 · · · 0 0 · · · 0
...

...
...

. . .
...

...
...

...

0 0 0 · · · yi1 yi2 · · · yi,T−2


being a (T − 2) by ((T − 2)(T − 1)/2) matrix,

Bi =


xi1 xi2 0 0 0 · · · 0 0 · · · 0

0 0 xi1 xi2 xi3 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 · · · xi1 xi2 · · · xi,T−1


being a (T − 2) by ((T − 1)T/2 − 1) matrix, and the weighting matrix

W qd
N =

(
(1/N)

N∑
i=1

Zqd
i

′
ϵqd
i (θ̃1)ϵ

qd
i (θ̃1)

′
Zqd

i

)−1

with ϵqd
i (θ̃1) being the vector ϵqd

i realized by incorporating an initial consistent es-

timate θ̃1 for θ. In this paper, the initial estimate θ̃1 for the GMM(qd) estima-

tor is obtained by minimizing (4.1.1) with respect to θ after replacing W qd
N with(

(1/N)
∑N

i=1 Zqd
i

′
Zqd

i

)−1

, which is consistent for the case of predetermined explana-

tory variables.

For the case of predetermined explanatory variables, the GMM(qd) estimator for

the parameter vector θ = [γ β]′ is consistent. However, the Monte Carlo experiments

carried out by BGW exhibit a poor small sample performance of the GMM(qd)

estimator.

4.2 GMM(pr) estimator

Under the assumption of predetermined explanatory variables (i.e. for the model

(3.1.1) with (3.1.4)), the consistent GMM(pr) estimator is constructed using the

moment conditions (3.2.25), (3.2.28), and (3.2.34), as a GMM estimator alternative

to the GMM(qd) estimator.

After defining

nit = ((µi,t−2/µi,t−1)ui,t−1 − ui,t−2)(1/µit)uit, for t = 4, . . . , T ,
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the GMM(pr) estimator for the parameter vector θ = [γ β]′ is obtained by minimiz-

ing the following criterion function with respect to θ:(
(1/N)

N∑
i=1

ϵpr
i

′Zpr
i

)
W pr

N

(
(1/N)

N∑
i=1

Zpr
i

′ϵpr
i

)
, (4.2.1)

where the column vector ϵpr
i = [pi

′ ni
′]′ with ni = [ni4 ni5 · · · niT ]′ being a (T − 3)

column vector, the matrix

Zpr
i =

[
Ai Bi O

O O I(T−3)

]

with I(T−3) being the (T − 3) by (T − 3) identity matrix and O being zero matrices,

and the weighting matrix

W pr
N =

(
(1/N)

N∑
i=1

Zpr
i

′ϵpr
i (θ̃1)ϵ

pr
i (θ̃1)

′
Zpr

i

)−1

with ϵpr
i (θ̃1) being the vector ϵpr

i realized by incorporating an initial consistent es-

timate θ̃1 for θ. In this paper, the initial estimate θ̃1 for the GMM(pr) estima-

tor is obtained by minimizing (4.2.1) with respect to θ after replacing W pr
N with(

(1/N)
∑N

i=1 Zpr
i

′Zpr
i

)−1

, which is consistent for the case of predetermined explana-

tory variables.

It is expected that the GMM(pr) estimator improves the poor small sample

performance of the GMM(qd) estimator.

4.3 GMM(ex) estimator

For the case of strictly exogenous explanatory variables, in which the model (3.1.1)

with (3.1.5) is postulated, the GMM(ex) estimator is constructed using the mo-

ment conditions (3.3.24), (3.3.27), and (3.3.32), with the intention of estimating

parameters of interest consistently.

After defining the quasi-differenced transformations of a different form

eit = uit − (µit/µi,t−1)ui,t−1, for t = 3, . . . , T

and

mit = (ui,t−1 − (µi,t−1/µi,t−2)ui,t−2)uit, for t = 4, . . . , T ,

the GMM(ex) estimator for the parameter vector θ = [γ β]′ is obtained by minimiz-
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ing the following criterion function with respect to θ:(
(1/N)

N∑
i=1

ϵex
i

′Zex
i

)
W ex

N

(
(1/N)

N∑
i=1

Zex
i

′ϵex
i

)
, (4.3.1)

where the column vector ϵex
i = [ei

′ mi
′]′ with ei = [ei3 ei4 · · · eiT ]′ being a (T − 2)

column vector and mi = [mi4 mi5 · · · miT ]′ being a (T − 3) column vector, the

matrix

Zex
i =

[
Ai Ci O

O O I(T−3)

]
with

Ci =


xi1 xi2 · · · xiT 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 xi1 xi2 · · · xiT · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · xi1 xi2 · · · xiT


being a (T − 2) by ((T − 2)T ) matrix, and the weighting matrix

W ex
N =

(
(1/N)

N∑
i=1

Zex
i

′ϵex
i (θ̃1)ϵ

ex
i (θ̃1)

′
Zex

i

)−1

with ϵex
i (θ̃1) being the vector ϵex

i realized by incorporating an initial consistent es-

timate θ̃1 for θ. In this paper, the initial estimate θ̃1 for the GMM(ex) estima-

tor is obtained by minimizing (4.3.1) with respect to θ after replacing W ex
N with(

(1/N)
∑N

i=1 Zex
i

′Zex
i

)−1

, which is consistent for the case of strictly exogenous ex-

planatory variables but not consistent for the case of predetermined explanatory

variables.

The GMM(ex) estimator is not consistent under the assumptions of predeter-

mined explanatory variables.

4.4 GMM(sa) estimator

The estimator constructed using the moment conditions (3.2.25), (3.2.28), (3.4.15),

and (3.4.21) is called the GMM(sa) estimator in this paper.

Under the assumptions that xit is predetermined, where the model (3.1.1) with

(3.1.4) is postulated, and that yit and xit are stationary in the sense described in

subsection 3.4, the GMM(sa) estimator for the parameters of interest is consistent.

32



After defining the quasi-level transformations

qit = (1/µit)uit, for t = 2, . . . , T ,

the GMM(sa) estimator for the parameter vector θ = [γ β]′ is obtained by minimiz-

ing the following criterion function with respect to θ:(
(1/N)

N∑
i=1

ϵsa
i

′Zsa
i

)
W sa

N

(
(1/N)

N∑
i=1

Zsa
i

′ϵsa
i

)
, (4.4.1)

where the column vector ϵsa
i = [pi

′ qi
′]′ with qi = [qi2 qi3 · · · qiT ]′ being a (T − 1)

column vector, the matrix

Zsa
i =

[
Ai Bi O O

O O Di Ei

]

with

Di =



0 0 · · · 0

∆yi2 0 · · · 0

0 ∆yi3 · · · 0
...

...
. . .

...

0 0 · · · ∆yi,T−1


being a (T − 1) by (T − 2) matrix and

Ei =


∆xi2 0 · · · 0

0 ∆xi3 · · · 0
...

...
. . .

...

0 0 · · · ∆xiT


being a (T − 1) by (T − 1) diagonal matrix, and the weighting matrix

W sa
N =

(
(1/N)

N∑
i=1

Zsa
i

′ϵsa
i (θ̃1)ϵ

sa
i (θ̃1)

′
Zsa

i

)−1

with ϵsa
i (θ̃1) being the vector ϵsa

i realized by incorporating an initial consistent es-

timate θ̃1 for θ. In this paper, the initial estimate θ̃1 for the GMM(sa) estima-

tor is obtained by minimizing (4.4.1) with respect to θ after replacing W sa
N with(

(1/N)
∑N

i=1 Zsa
i

′Zsa
i

)−1

, which is consistent under the assumptions that xit is pre-

determined and that yit and xit are stationary.

33



Under the assumption that yit and xit are stationary, it is expected that the

GMM(sa) estimator improves the poor small sample performance of the GMM(qd)

estimator.

4.5 GMM(sb) estimator

Under the assumptions that xit is predetermined, where the model (3.1.1) with

(3.1.4) is postulated, and that yit and xit are stationary in the sense described in

subsection 3.4, an alternative to the GMM(sa) estimator is constructed using the

moment conditions (3.2.25), (3.2.28), (3.4.15), (3.4.21) for t = 2, and (3.4.24). The

alternative is consistent and called the GMM(sb) estimator in this paper. The

difference between both estimators is that the GMM(sb) estimator uses the moment

conditions (3.4.24) in place of (3.4.21) for t = 3, . . . , T used in GMM(sa) estimator.

After defining

dit = xituit − xi,t−1ui,t−1, for t = 3, . . . , T ,

the GMM(sb) estimator for the parameter vector θ = [γ β]′ is obtained by minimiz-

ing the following criterion function with respect to θ:(
(1/N)

N∑
i=1

ϵsb
i

′
Zsb

i

)
W sb

N

(
(1/N)

N∑
i=1

Zsb
i

′
ϵsb
i

)
, (4.5.1)

where the column vector ϵsb
i = [pi

′ qi
′ di

′]′ with di = [di3 di4 · · · diT ]′ being a (T − 2)

column vector, the matrix

Zsb
i =

 Ai Bi O O

O O Fi O

O O O I(T−2)


with

Fi =



∆xi2 0 0 · · · 0

0 ∆yi2 0 · · · 0

0 0 ∆yi3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ∆yi,T−1


being a (T − 1) by (T − 1) diagonal matrix and I(T−2) being the (T − 2) by (T − 2)
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identity matrix, and the weighting matrix

W sb
N =

(
(1/N)

N∑
i=1

Zsb
i

′
ϵsb
i (θ̃1)ϵ

sb
i (θ̃1)

′
Zsb

i

)−1

with ϵsb
i (θ̃1) being the vector ϵsb

i realized by incorporating an initial consistent es-

timate θ̃1 for θ. In this paper, the initial estimate θ̃1 for the GMM(sb) estima-

tor is obtained by minimizing (4.5.1) with respect to θ after replacing W sb
N with(

(1/N)
∑N

i=1 Zsb
i

′
Zsb

i

)−1

, which is consistent under the assumptions that xit is pre-

determined and that yit and xit are stationary.

Under the assumption that yit and xit are stationary, it is also expected that the

GMM(sa) estimator improves the poor small sample performance of the GMM(qd)

estimator.

5 Monte Carlo experiments

In this section, the small sample performances of the GMM estimators exhibited

in previous section are investigated with some Monte Carlo experiments. For the

sake of the comparison with the GMM estimators, some estimators other than the

GMM estimators are also investigated for the LFM. The Monte Carlo experiments

are implemented by using an econometric software TSP version 4.5.

5.1 Data generating process

The data used in the Monte Carlo studies is generated from the following data

generating process (DGP):

yit ∼ Poisson(γyi,t−1 + exp(βxit + ϖηi + ϱξi + ϑεit − (1/2)ϑ2σ2
ε)),

(5.1.1)

yi,−TG+1 ∼ Poisson(π exp(βxi,−TG+1 + ϖηi + ϱξi + ϑεi,−TG+1 − (1/2)ϑ2σ2
ε)),

(5.1.2)

xit = ρxi,t−1 + κηi + ιζi + τwit + δεi,t−1, (5.1.3)

xi,−TG+1 = (1/(1 − ρ))(κηi + ιζi) + (1/
√

1 − ρ2)(τwi,−TG+1 + δνi), (5.1.4)

ηi ∼ N(0, σ2
η); ξi ∼ N(0, σ2

ξ ); εit ∼ N(0, σ2
ε);

ζi ∼ N(0, σ2
ζ ); wit ∼ N(0, σ2

w); νi ∼ N(0, σ2
ε),
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where t = −TG + 1, . . . , 1, . . . , T with TG being periods of the pre-sample to be

generated. In the DGP, the values are set to the parameters γ, β, π, ρ, κ, σ2
η, ι, σ2

ζ ,

τ , σ2
w, δ, σ2

ε , ϖ, ϱ, σ2
ξ , and ϑ. The experiments are carried out with the pre-sample

periods TG = 50, the cross-sectional sizes N = 100, 500, and 1000, the periods used

for the estimations T = 4 and 8, and the number of replications NR = 1000.

5.2 Estimators for comparison

For the model (3.1.1) in subsection 3.1, based on which the DGP composed of

(5.1.1), (5.1.2), (5.1.3), and (5.1.4) is designed, three estimators other than the

GMM estimators are sketched in this subsection and their properties are described

under both sets of the assumptions of (3.1.4) and (3.1.5). These estimators are

presented in BGW.

The first is the Level estimator, which is the solution of the following system:

N∑
i=1

T∑
t=2

(yit − γyi,t−1 − exp(β0 + βxit)) = 0, (5.2.1)

N∑
i=1

T∑
t=2

yi,t−1(yit − γyi,t−1 − exp(β0 + βxit)) = 0, (5.2.2)

N∑
i=1

T∑
t=2

xit(yit − γyi,t−1 − exp(β0 + βxit)) = 0. (5.2.3)

The Level estimator for the set of parameters γ and β (and further β0) is inconsis-

tent for both cases of predetermined explanatory variables and strictly exogenous

explanatory variables, because it ignores the presence of the fixed effect. As stated

in BGW, it can be expected that the upward bias appears, endemic to the Level

estimator.

The second is the within group (WG) estimator, which is the solution of the

following system:

N∑
i=1

T∑
t=2

yi,t−1(yit − γyi,t−1 − ((ȳi − γȳi,−1)/µ̄i)µit) = 0, (5.2.4)

N∑
i=1

T∑
t=2

xit(yit − γyi,t−1 − ((ȳi − γȳi,−1)/µ̄i)µit) = 0, (5.2.5)

where ȳi = (1/(T − 1))
∑T

t=2 yit, ȳi,−1 = (1/(T − 1))
∑T

t=2 yi,t−1, and µ̄i = (1/(T −
1))

∑T
t=2 µit. For both cases of predetermined explanatory variables and strictly

exogenous explanatory variables, the WG estimator for the set of parameters γ and
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β is inconsistent when T is fixed and N → ∞.9 The WG estimator is proposed by

BGW, and with the setup of γ = 0 and for the case of strictly exogenous explanatory

variables, the WG estimator for the parameter β is consistent when T is fixed and

N → ∞ and equivalent to Poisson CMLE proposed by Hausman et al. (1984) and

the ordinary Poisson maximum likelihood estimator. As stated in BGW, it can be

expected that the downward bias appears, endemic to the WG estimator.

The third is the pre-sample mean (PSM) estimator, which is the solution of the

following system:

N∑
i=1

T∑
t=2

(yit − γyi,t−1 − exp(β∗
0 + βxit + φ ln(ȳip)) = 0, (5.2.6)

N∑
i=1

T∑
t=2

yi,t−1(yit − γyi,t−1 − exp(β∗
0 + βxit + φ ln(ȳip)) = 0, (5.2.7)

N∑
i=1

T∑
t=2

xit(yit − γyi,t−1 − exp(β∗
0 + βxit + φ ln(ȳip)) = 0, (5.2.8)

N∑
i=1

T∑
t=2

(ln(ȳip))(yit − γyi,t−1 − exp(β∗
0 + βxit + φ ln(ȳip)) = 0, (5.2.9)

where ȳip = (1/TP )
∑TP−1

r=0 yi,0−r with TP being the number of the pre-sample

periods to be used for the estimation. For both cases of predetermined explanatory

variables and strictly exogenous explanatory variables, the consistency of the PSM

estimator for the set of parameters γ and β (and further β∗
0 and φ) when T is fixed

and N → ∞ relies on the assumptions that TP → ∞, that the fixed effect in the

explanatory variable is proportional to the fixed effect in the regression equation,

and that the (finite) moment generating function of the disturbance composing

the explanatory variable is equal intertemporally and cross-sectionally.10 The PSM

estimator has some attractive small sample properties under the assumptions above,

but its defect is that it is felt that the situation where the assumptions above are

wholly satisfied does not necessarily come into being in the empirical analysis. In

particular, collecting the data of the dependent variable with a certain length of the

pre-sample history for each individual is considered to be cumbersome. The PSM

estimator is proposed by Blundell et al. (1999) and BGW, based on the idea that

the pre-sample mean is able to be used as a proxy for the fixed effect, depending on

circumstances.11

9However, when T → ∞ and N → ∞, the WG estimator is consistent for both cases.
10It is premised that the explanatory variable is stationary and composed of the fixed effect, the

constant term, and the disturbance with its mean being zero.
11This idea originates from Blundell et al. (1995).
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5.3 Results for strictly exogenous explanatory variables

Some Monte Carlo experiments are carried out for the case of strictly exogenous

explanatory variables. The values of parameters for this case are set in the DGP

composed of (5.1.1), (5.1.2), (5.1.3), and (5.1.4). The parameter settings specified

in this subsection are the same as those used in Tables 1, 2, and 3 in BGW.

Results for this case are shown in Tables 1, 2, 3, and 4 in terms of bias and root

mean squared error (rmse). It is seen from these tables that in almost all cases the

GMM estimators cutting down the instruments for the quasi-differenced transfor-

mations perform better than the GMM estimators using the full set of instruments

for the quasi-differenced transformations, when using the identical estimators. The

symbols γ(99) and β(99) represent the usage of the full set of instruments for esti-

mating γ and β in the GMM estimators, while γ(1) and β(1) represent the usage of

the curtailed set. That is, the figure 99 in the parentheses next to γ and β implies

that all the instruments required by the GMM estimators presented in section 4 are

used in the estimations, while the figure 1 implies that the past dependent variables

(yit) dated t−3 and before are not used as the instruments for the quasi-differenced

equations dated t and further for the cases of the GMM(qd) and GMM(pr) esti-

mators the past explanatory variables (xit) dated t − 3 and before are not used as

the instruments for the quasi-differenced equations dated t. In addition, since the

Level and WG estimators are inconsistent in this situation, bias endemic to these

estimators is found, which does not diminish with N increasing, and rmse for the

WG estimator does not diminish as well, while the PSM estimators using the long

history of the pre-sample perform well, reflecting the property of the consistent es-

timator. As for the PSM estimator, the figures in the parentheses next to γ and β

imply the values of TP .

In Tables 1 and 2, results for moderately persistent yit and xit (which are char-

acterized by γ = 0.5, β = 0.5, and ρ = 0.5) are shown for the combinations of

N = 100, 500, and 1000, and T = 4 and 8. In this situation, the GMM(qd) estima-

tor is considerably downward biased and sizes of bias and rmse for the GMM(pr)

and GMM(ex) estimators are smaller than those for the GMM(qd) estimator for

all the combinations of N and T , when the same types of instruments on yit are

used for the quasi-differenced transformations. Especially, sizes of bias and rmse

for the GMM(ex) estimators are much smaller than those for the GMM(qd) esti-

mator. For example, when T = 4 and N = 500, the sets of bias and rmse of γ(1)

and β(1) for the GMM(pr) estimator are (−0.031, 0.088) and (−0.053, 0.151) respec-

tively and those of γ(1) and β(1) for the GMM(ex) estimator are (−0.025, 0.087) and

(−0.027, 0.128) respectively, while those of γ(1) and β(1) for the GMM(qd) estima-
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tor are (−0.108, 0.166) and (−0.126, 0.224) respectively. Further, when T = 8 and

N = 1000, the performance of the GMM(ex) estimator is slightly superior to that of

the PSM estimator with TP = 50. That is, when T = 8 and N = 1000, the sets of

bias and rmse of γ(1) and β(1) for the GMM(ex) estimator are (−0.017, 0.035) and

(−0.025, 0.044) respectively, while those of γ(50) and β(50) for the PSM estimator

are (0.040, 0.044) and (0.038, 0.045) respectively.

This trend is also true of both situations of the considerably persistent yit and

xit and the considerably persistent yit and extremely persistent xit. The former sit-

uation is characterized by the settings of parameters γ = 0.7, β = 1, and ρ = 0.9,

whose results are exhibited in Table 3, while the latter situation is characterized

by the settings of parameters γ = 0.7, β = 1, and ρ = 0.95, whose results are

exhibited in Table 4. It can be said that in both situations, albeit the GMM(qd)

estimator is considerably downward biased, sizes of bias and rmse for the GMM(pr)

and GMM(ex) estimators are much smaller than those for the GMM(qd) estimator

for T = 8 and N = 100, 500, and 1000. Especially, sizes of bias and rmse for

the GMM(ex) estimator are markedly small for larger sizes of N (i.e. N = 500 and

1000), and in the situation of considerably persistent yit and extremely persistent xit,

sizes of bias for the GMM(ex) estimator are much smaller than those for the PSM

estimator with TP = 50 for larger sizes of N (i.e. N = 500 and 1000).12 For exam-

ple, in the situation of considerably persistent yit and extremely persistent xit, when

T = 8 and N = 500, the sets of bias and rmse of γ(1) and β(1) for the GMM(pr)

estimator are (0.002, 0.082) and (−0.176, 0.546) respectively and those of γ(1) and

β(1) for the GMM(ex) estimator are (0.006, 0.085) and (−0.041, 0.340) respectively,

while those of γ(1) and β(1) for the GMM(qd) estimator are (−0.138, 0.189) and

(−0.588, 1.148) respectively and further those of γ(50) and β(50) for the PSM esti-

mator are (0.070, 0.074) and (−0.165, 0.190) respectively.

It is shown from the Monte Carlo experiments above that for the case of strictly

exogenous explanatory variables, the GMM(pr) and GMM(ex) estimators perform

fairly better than the GMM(qd) estimator in terms of bias and rmse.

Next, the small sample performances of the GMM estimators proposed in this

paper (i.e. the GMM(pr) and GMM(ex) estimators) are compared with that of the

GMM(qd) estimator from the viewpoint of efficiency gain and inference. For N =

100, 500, and 1000, results of Monte Carlo standard deviation (mcsd) and Monte

Carlo mean of standard error (mcmse) are shown in Table 5 for the situation of

12The Monte Carlo experiments by BGW point out that the PSM estimator with the large
number of the pre-sample history used is able to be biased in the situation of considerably persistent
yit and extremely persistent xit. BGW mentions that this will be due to the multicollinearity
between xit and ln ȳip originating when xit is extremely persistent.
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moderately persistent yit and xit when T = 4, Table 6 for the situation of moderately

persistent yit and xit when T = 8, Table 7 for the situation of considerably persistent

yit and xit when T = 8, and Table 8 for the situation of considerably persistent yit

and extremely persistent xit when T = 8.

For the situation of moderately persistent yit and xit when T = 4, it can be said

that values of mcsd of γ and β for the GMM(pr) and GMM(ex) estimators are, at

some level, smaller than those for the GMM(qd) estimator for N = 100, 500, and

1000, while when T = 8, it can be said with difficulty that values of mcsd of γ

and β for the GMM(pr) and GMM(ex) estimators are smaller than those for the

GMM(qd) estimator only for N = 1000. For example, when T = 4 and N = 1000,

values of mcsd of γ(1) and β(1) for the GMM(pr) estimator are 0.065 and 0.125

respectively and those of γ(1) and β(1) for the GMM(ex) estimator are 0.060 and

0.093 respectively, while those of γ(1) and β(1) for the GMM(qd) estimator are

0.096 and 0.157 respectively.

For the situation of considerably persistent yit and xit when T = 8, it cannot

be said at all that for N = 100 values of mcsd of γ and β for the GMM(pr) and

GMM(ex) estimators are smaller than those for the GMM(qd) estimators, while it

can be said that for N = 500 and 1000 values of mcsd of β for the GMM(pr) and

GMM(ex) estimators are smaller than those for the GMM(qd) estimator when using

the curtailed set of instruments and values of mcsd of γ are about the same among

the three GMM estimators. For example, when N = 1000, values of mcsd of γ(1)

and β(1) for the GMM(pr) estimator are 0.045 and 0.230 respectively and those of

γ(1) and β(1) for the GMM(ex) estimator are 0.046 and 0.135 respectively, while

those of γ(1) and β(1) for the GMM(qd) estimator are 0.058 and 0.301 respectively.

For the situation of considerably persistent yit and extremely persistent xit, when

T = 8, it can be said without doubt that for N = 500 and 1000 values of mcsd of

β for the GMM(pr) and GMM(ex) estimators are clearly smaller than those for the

GMM(qd) estimator and values of mcsd of γ are about the same among the three

GMM estimators. For example, when N = 1000, values of mcsd of γ(1) and β(1)

for the GMM(pr) estimator are 0.055 and 0.443 respectively and those of γ(1) and

β(1) for the GMM(ex) estimator are 0.056 and 0.224 respectively, while those of

γ(1) and β(1) for the GMM(qd) estimator are 0.082 and 0.738 respectively.

For the case of strictly exogenous explanatory variables, it seems that it is not

until the cross-sectional size is large that the efficiency gain is recognized when the

GMM(pr) and GMM(ex) estimators are used as opposed to the GMM(qd) estimator,

judging from the results of Monte Carlo experiments as mentioned above.

As seen from the comparison of mcsd and mcmse in Tables 5, 6, 7, and 8, it
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is conceivable that the estimated standard errors for the GMM(pr) and GMM(ex)

estimators as well as those for the GMM(qd) estimator are fairly biased downward

in almost all cases when N = 100. This implies that the inferences using the

the GMM(pr) and GMM(ex) estimators as well as the GMM(qd) estimator are

problematic when the cross-sectional size is small.13

5.4 Results for predetermined explanatory variables

In the experiments carried out in this subsection, the settings of parameters in the

DGP are arranged in order that the explanatory variable xit is able to be predeter-

mined, as characterized by δ = 1 and ϑ = 1. In addition, the settings of parameters

are arranged in order that the dependent variable yit is mean-stationary starting

from the mean-stationary initial value, as characterized by π = 1/(1 − γ).

Results for this case are shown in Tables 9, 10, 11, and 12 in terms of bias and

rmse. The results are about the same as those for the case of strictly exogenous

explanatory variables in previous subsection, except for those for the GMM(ex)

estimator.

The Level and WG estimators are upward and downward biased respectively,

and values of bias for the Level and WG estimators (which are also inconsistent

in this case) level out with N increasing from 100, 500, to 1000 and values of

rmse for the WG estimators level out as well. Since the GMM(ex) estimator is

inconsistent for the case of predetermined xit, bulky sizes of (downward) bias and

rmse for the GMM(ex) estimator with respect to β do not decrease sharply with

N increasing. It can be said that the consistent GMM estimators cutting down

the instruments for the quasi-differenced transformations roughly perform better

than the consistent GMM estimators using the full set of instruments for the quasi-

differenced transformations in terms of bias and rmse. The PSM estimator using the

long history of the pre-sample performs well, reflecting the property of the consistent

estimator.

For the situation of moderately persistent yit and xit where the typical settings of

parameters are γ = 0.5, β = 0.5, and ρ = 0.5, results on bias and rmse are shown in

Table 9 for T = 4 and Table 10 for T = 8. The GMM(qd) estimator is considerably

downward biased for the smaller cross-sectional sizes (i.e. N = 100 and 500). Sizes

of bias and rmse for the GMM(qd), GMM(pr), GMM(sa), and GMM(sb) estima-

tors decrease with N increasing, reflecting the property of the consistent estimators,

while it can be reckoned that those for the inconsistent GMM(ex) estimator do not

13One possibility of solving this problem is to use the finite sample corrected variance proposed
by Windmeijer (2005, 2006) as the estimated variance for the purpose of conducting the inferences.
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decrease so much with N increasing. It can be seen that sizes of bias and rmse for

the GMM(pr), GMM(sa), and GMM(sb) estimators are considerably smaller than

those for the GMM(qd) estimators for each N and each T , when the same types

of instruments composed of lagged yit and xit are used for the quasi-differenced

transformations and moreover it can be said that the small sample performance of

the GMM(sa) estimators is best among the three estimators. For example, when

T = 4 and N = 100, the sets of bias and rmse of γ(1) and β(1) for the GMM(qd)

estimator are (−0.318, 0.474) and (−0.242, 0.374) respectively, while those of γ(1)

and β(1) for the GMM(pr) estimator are (−0.079, 0.278) and (−0.140, 0.318) respec-

tively, those of γ(1) and β(1) for the GMM(sa) estimator are (−0.010, 0.182) and

(−0.072, 0.243) respectively, and those of γ(1) and β(1) for the GMM(sb) estimator

are (−0.007, 0.192) and (−0.110, 0.291) respectively. In addition, it is no exagger-

ation to say that when N = 500 and 1000, the performances of the GMM(pr),

GMM(sa), and GMM(sb) estimators bear comparison to or are superior to that for

the PSM estimator with TP = 50 whose small sample property is very preferable.

For example, when T = 8 and N = 500, the sets of bias and rmse of γ(1) and

β(1) for the GMM(pr) estimator are (−0.001, 0.082) and (−0.042, 0.098) respec-

tively, those of γ(1) and β(1) for the GMM(sa) estimator are (−0.012, 0.056) and

(−0.033, 0.082) respectively, and those of γ(1) and β(1) for the GMM(sb) estimator

are (−0.008, 0.057) and (−0.041, 0.090) respectively, while those of γ(50) and β(50)

for the PSM estimator are (0.042, 0.056) and (0.018, 0.038) respectively.

For the situation of the considerably persistent yit and xit where the typical

settings of parameters are γ = 0.7, β = 1, and ρ = 0.9, results on bias and rmse are

shown in Table 11 for T = 8, and for the situation of the considerably persistent yit

and extremely persistent xit where the typical settings of parameters are γ = 0.7,

β = 1, and ρ = 0.95, results on bias and rmse are shown in Table 12 for T = 8. In

both situations, the same tendency as in the situation of the moderately persistent

yit and xit is found as a whole. In both situations, the GMM(qd) estimator is

considerably downward biased and sizes of rmse for the GMM(qd) estimator are

also large even when N = 1000. However, sizes of bias and rmse for the GMM(pr),

GMM(sa), and GMM(sb) estimators are much smaller than those for the GMM(qd)

estimator. Especially, sizes of bias and rmse for the GMM(sa) estimators are, to a

considerable degree, small for the larger sizes of N (i.e. N = 500 and 1000), and in

the situation of considerably persistent yit and extremely xit, sizes of bias of γ(1)

and β(1) of the GMM(sa) estimators are considerably smaller than those for the
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PSM estimator with TP = 50 for the larger sizes of N (i.e. N = 500 and 1000).14

For example, in the situation of considerably persistent yit and extremely persistent

xit when T = 8 and N = 500, the sets of bias and rmse of γ(1) and β(1) for

the GMM(pr) estimator are (−0.001, 0.088) and (−0.159, 0.550) respectively, those

of γ(1) and β(1) for the GMM(sa) estimator are (0.008, 0.049) and (−0.143, 0.367)

respectively, and those of γ(1) and β(1) for the GMM(sb) estimator are (0.008, 0.053)

and (−0.230, 0.479) respectively, while those of γ(1) and β(1) for the GMM(qd)

estimator are (−0.167, 0.229) and (−0.637, 1.167) respectively, and further those

of γ(50) and β(50) for the PSM estimator are (0.075, 0.080) and (−0.211, 0.230)

respectively.

It is shown from the Monte Carlo experiments above that for the case of predeter-

mined explanatory variables where further the stationary dependent and explanatory

variables are assumed, the GMM(pr), GMM(sa), and GMM(sb) estimators perform

fairly better than the GMM(qd) estimator in terms of bias and rmse.

Next, the consistent GMM estimators proposed in this paper (i.e. the GMM(pr),

GMM(sa), and GMM(sb) estimators) are compared with the GMM(qd) estimator

from the viewpoint of efficiency gain and inference. Results of mcsd and mcmse are

shown in Table 13 for the case of moderately persistent yit and xit when T = 4,

Table 14 for the case of moderately persistent yit and xit when T = 8, Table 15 for

the case of considerably persistent yit and xit when T = 8, and Table 16 for the

case of considerably persistent yit and extremely persistent xit when T = 8. The

comparison is conducted, confined to the cases where the same types of instruments

are used for the quasi-differenced equations.

For the situation of moderately persistent yit and xit when T = 4, values of mcsd

of γ and β for the GMM(sa) estimator are, to some degree, smaller than those for

the GMM(qd) estimator for N = 100, 500, and 1000 and those for the GMM(sb)

estimator are, to some degree, smaller than those for the GMM(qd) estimator for

N = 500 and 1000, while it would be safe to say that only values of mcsd of γ for

the GMM(pr) estimator are, to some degree, smaller than those for the GMM(qd)

estimator for N = 100, 500, and 1000. For example, when T = 4 and N = 500,

values of mcsd of γ(1) and β(1) for the GMM(sa) estimator are 0.100 and 0.135

respectively and those of γ(1) and β(1) for the GMM(sb) estimator are 0.103 and

0.144 respectively, while those of γ(1) and β(1) for the GMM(qd) estimator are

0.167 and 0.190 respectively and those of γ(1) and β(1) for the GMM(pr) estimator

are 0.130 and 0.188 respectively.

14As pointed out in previous subsection, the multicollinearity between xit and ln ȳip is a potential
source of the fact that the PSM estimator with the large number of the pre-sample history used is
biased in the situation of considerably persistent yit and extremely persistent xit.

43



On the contrary, for the situation of moderately persistent yit and xit, when T =

8, it can be said that values of mcsd of γ for the GMM(sa) and GMM(sb) estimators

are, to some degree, smaller than those for the GMM(qd) estimator for N = 100, 500,

and 1000, while values of the mcsd of β for the GMM(sa) and GMM(sb) estimators

are little less than those for the GMM(qd) estimator for N = 500 and are smaller

than those for the GMM(qd) estimator only for N = 1000 where values of mcsd

for the three estimators are considerably small. Values of mcsd of γ and β for the

GMM(pr) estimator are little less than those for the GMM(qd) estimator only for

1000. For example, when T = 8 and N = 500, values of mcsd of γ(1) and β(1) for

the GMM(sa) estimator are 0.054 and 0.076 respectively and those of γ(1) and β(1)

for the GMM(sb) estimator are 0.056 and 0.080 respectively, while those of γ(1) and

β(1) for the GMM(qd) estimator are 0.083 and 0.081 respectively and those of γ(1)

and β(1) for the GMM(pr) estimator are 0.082 and 0.088 respectively.

For both cases of considerably persistent yit and xit and considerably persistent

yit and extremely persistent xit when T = 8, it can be said that values of mcsd of

γ and β for the GMM(sa) and GMM(sb) estimators are much smaller than those of

γ and β for the GMM(qd) estimator for N = 100, 500 and 1000, except for those

of β(99) for the GMM(sa) and GMM(sb) estimators for the case of considerably

persistent yit and xit when N = 100. On the contrary, it can be said that values of

mcsd of γ(1) and β(1) for the GMM(pr) estimator are comparatively mildly smaller

than those for the GMM(qd) estimator for N = 100, 500, and 1000. For example, for

the case of considerably persistent yit and extremely persistent xit when T = 8 and

N = 500, values of mcsd of γ(1) and β(1) for the GMM(sa) estimator are 0.049 and

0.338 respectively and those of γ(1) and β(1) for the GMM(sb) estimator are 0.052

and 0.420 respectively, while those of γ(1) and β(1) for the GMM(qd) estimator are

0.157 and 0.977 respectively and those of γ(1) and β(1) for the GMM(pr) estimator

are 0.088 and 0.526 respectively.

For the situation of predetermined explanatory variables where further the sta-

tionary dependent and explanatory variables are assumed, it seems that it is not

until N is large that the efficiency gain is recognized when the GMM(pr) estimator

is used as opposed to the GMM(qd) estimator as well as for the situation of strictly

exogenous explanatory variables, while it can be said that the significant efficiency

gain by using the GMM(sa) and GMM(sb) estimators as opposed to the GMM(qd)

estimator is recognized for the smaller N as well as for the larger N .

For the case of predetermined explanatory variables where further the stationary

dependent and explanatory variables are assumed, the comparison of mcsd and

mcmse in Tables 13, 14, 15, and 16 says that the estimated standard errors for the
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GMM(pr), GMM(sa), and GMM(sb) estimators as well as those for the GMM(qd)

estimators are fairly biased downwards when the cross-sectional size is small, and

therefore the inferences using these estimators should be implemented with caution

when the cross-sectional size is small.15

5.5 Results for different types of fixed effect

Using three different types of the fixed effect in the LFM, the experiments are

carried out in this subsection. The first type corresponds to the case where the

fixed effect composing the explanatory variable is proportional to the fixed effect in

the count regression, the second type corresponds to the case where the fixed effect

composing the explanatory variable is correlated with the fixed effect in the count

regression but not proportional to the fixed effect in the count regression, and the

third type corresponds to the case where the fixed effect composing the explanatory

variable is uncorrelated with the fixed effect in the count regression. The first type

is characterized by ϖ = 1 and ϱ = 0, the second type characterized by ϖ = 0.6 and

ϱ = 0.8, and the third type characterized by ϖ = 0 and ϱ = 1. From now on, the

cases for the first, second, and third types are called the case of the proportional

fixed effect, the case of the correlated fixed effect, and the case of the uncorrelated

fixed effect, respectively. Results of the experiments for these three cases are shown

in Tables 17, 18, and 19 in terms of bias and rmse. The sizes of the variances of

the fixed effect composing the explanatory variable are equal among the three cases,

and the sizes of the variances of the fixed effect in the count regression are equal

among the three cases as well. For the three cases, the values of parameters are set

in such a way that the explanatory variable xit is predetermined and stationary and

the dependent variable yit is mean-stationary.

For the case of the proportional fixed effect, it is verified from Table 17 that

the GMM(pr), GMM(sa), and GMM(sb) estimators behave spectacularly better

than the GMM(qd) estimator. For example, when N = 100, the sets of bias

and rmse of γ(1) and β(1) for the GMM(sa) estimator are (−0.109, 0.261) and

(0.065, 0.209) respectively, while those of γ(1) and β(1) for the GMM(qd) estimator

are (−0.460, 0.576) and (−0.546, 0.776) respectively. Further, the PSM estimator

with the pre-sample history used being large (i.e. TP = 50) behaves better than

the GMM(pr), GMM(sa), and GMM(sb) estimators when N = 100, and sizes of

bias of γ(1) and β(1) for the GMM(sa) and GMM(sb) estimators are not superior

15It is conceivable that the finite sample variance correction proposed by Windmeijer (2005,
2006) make it possible to conduct the acceptable inferences, because it may improve the downward
bias.
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to or not on a par with those of the PSM estimator with TP = 50 until the cross-

sectional size of N = 500 or 1000 is reached, reflecting the consistency of the PSM

estimator with TP being large for the case of the proportional fixed effect. That

is, when N = 100, the sets of bias and rmse of γ(1) and β(1) are (0.094, 0.221) and

(0.294, 0.397) for the GMM(pr) estimator, (−0.109, 0.261) and (0.065, 0.209) for the

GMM(sa) estimator, and (−0.161, 0.280) and (0.081, 0.238) for the GMM(sb) es-

timator, while those of γ(50) and β(50) for the PSM estimator are (0.004, 0.177)

and (−0.003, 0.084), and when N = 1000, values of bias of γ(1) and β(1) for the

GMM(sa) estimator are −0.027 and −0.001 respectively, while those of γ(50) and

β(50) for the PSM estimator are 0.068 and −0.005 respectively.

However, for both cases of the correlated fixed effect and the uncorrelated fixed

effect, the PSM estimator is inconsistent under the assumptions of N → ∞ and

TP → ∞. Although the GMM(pr), GMM(sa), and GMM(sb) estimators behave

spectacularly better than the GMM(qd) estimators for the smaller size of cross-

section (i.e. N = 100) as well as for the larger sizes of cross-section (i.e. N = 500

and N = 1000), the performance of the inconsistent PSM estimator is not preferable

even with N and TP large. In other words, the accuracy of the PSM estimator for

both cases of the correlated fixed effect and the uncorrelated fixed effect remains

in low degree when TP is large (i.e. TP = 50) and N is larger (i.e. N = 500 or

N = 1000), while the accuracies of the GMM(sa) and GMM(sb) estimators largely

surpass that of PSM estimator with TP = 50 for the larger sizes of cross-section

(i.e. N = 500 and N = 1000), reflecting the property of the consistent estimator,

and further it can be said that for the case of the uncorrelated fixed effect, the

accuracies of the GMM(sa) and GMM(sb) estimators are better than that of PSM

estimator with TP = 50 even for the smaller sizes of cross-section (i.e. N = 100),

judging from the comprehensive standpoint. In addition, it can be said that the

GMM(pr) estimator performs better than the PSM estimator with TP = 50 for the

case of the uncorrelated fixed effect even for the smaller sizes of cross-section (i.e.

N = 100), judging from the comprehensive standpoint. It is confirmed in the Monte

Carlo experiments that even when the usage of the PSM estimator is not valid, the

GMM(pr), GMM(sa), and GMM(sb) estimators are able to perform considerably

well. These results are different from those for the case of the proportional fixed

effect.

For the case of the correlated fixed effect, to illustrate, when N = 100, the

sets of bias and rmse of γ(1) and β(1) are (0.075, 0.221) and (0.177, 0.338) for the

GMM(pr) estimator, (−0.056, 0.200) and (0.008, 0.189) for the GMM(sa) estimator,

and (−0.115, 0.226) and (0.033, 0.233) for the GMM(sb) estimator, while those of
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γ(50) and β(50) for the PSM estimator are (0.082, 0.134) and (−0.123, 0.152), and

when N = 1000, the sets of bias and rmse of γ(1) and β(1) for the GMM(sa)

estimator are (−0.008, 0.086) and (−0.011, 0.109), while those of γ(50) and β(50)

for the PSM estimator are (0.135, 0.147) and (−0.127, 0.130).

For the case of the uncorrelated fixed effect, to illustrate, when N = 100, the

sets of bias and rmse of γ(1) and β(1) are (0.050, 0.177) and (−0.020, 0.296) for the

GMM(pr) estimator, (−0.003, 0.126) and (−0.098, 0.215) for the GMM(sa) estima-

tor, and (−0.049, 0.152) and (−0.073, 0.251) for the GMM(sb) estimator, while those

of γ(50) and β(50) for the PSM estimator are (0.114, 0.135) and (−0.218, 0.235), and

when N = 1000, the sets of bias and rmse of γ(1) and β(1) for the GMM(sa) esti-

mator are (0.004, 0.044) and (−0.044, 0.102), while those of γ(50) and β(50) for the

PSM estimator are (0.145, 0.150) and (−0.221, 0.222).

In addition, casting a spotlight on sizes of bias and rmse of γ(25) and β(25) and

γ(50) and β(50) in Tables 17, 18, and 19, it can be recognized that the accuracy of

the PSM estimator with TP being large decreases with the decrease of magnitude

of the correlation between the fixed effect composing the explanatory variable and

the fixed effect in the count regression.

Due to the above observation, it is felt that taking into consideration the magni-

tude of the correlation between the fixed effect composing the explanatory variable

and the fixed effect in the count regression is important in the empirical applications

using the PSM estimator. It is recommended that even if the long pre-sample history

for the dependent variable is available, the GMM(pr), GMM(sa), and GMM(sb) es-

timators are used to the empirical applications where the number of time periods is

very small and the number of cross-sectional sizes is moderately large and then the

results using these estimators are compared with those using the other estimators

(i.e. the Level, WG, and PSM estimators).

6 Conclusion

In this paper, some moment conditions for consistently estimating the LFM for count

panel data were derived on the basis of the structure of variance and covariance of the

disturbance in the LFM. The moment conditions were derived by using the implicit

operation under the four assumptions: the assumption of predetermined explanatory

variables, the assumption of strictly exogenous explanatory variables, the assump-

tion of mean-stationary dependent variables, and the assumption of equidispersion.

Under the assumption of predetermined explanatory variables, the set of the moment

conditions based on the quasi-differenced transformation proposed by Chamberlain
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(1992) and Wooldridge (1997) and a variant of the set of the moment conditions pro-

posed by Windmeijer (2000) were obtained, while under the assumption of strictly

exogenous explanatory variables, a different set of the moment conditions based on

the quasi-differenced transformation and a variant of the set of the moment con-

ditions proposed by Crépon and Duguet (1997) were obtained, both of which are

not valid under the assumption of predetermined explanatory variables. Further,

imposing the assumption of mean-stationary dependent variables has given birth to

the stationarity moment conditions compatible with count panel data. In addition,

imposing the assumption of equidispersion has generated further moment conditions

remaining unspotted until now.

Using these sets of the moment conditions, the following five GMM estima-

tors were constructed: the GMM(qd) estimator using the set based on the quasi-

differenced transformation only, the GMM(pr) estimator using the set based on the

quasi-differenced transformation and the variant valid under the assumption of pre-

determined explanatory variables, the GMM(ex) estimator using the set based on

the quasi-differenced transformation and the variant valid under the assumption of

strictly exogenous explanatory variables, and the GMM(sa) and GMM(sb) estima-

tors incorporating the stationarity moment conditions compatible with count panel

data.

Monte Carlo experiments were carried out in order to investigate the small sam-

ple performances of these GMM estimators and compare them with those of the

estimators developed until now (i.e. the Level, WG, and PSM estimators). The

results of the experiments indicated that the GMM(pr) and GMM(ex) estimators

perform considerably better than the GMM(qd) estimator under the assumption

of strictly exogenous explanatory variables, and the GMM(pr), GMM(sa), and

GMM(sb) estimators perform considerably better than the GMM(qd) estimator

under the assumption of predetermined and stationary explanatory variables and

stationary dependent variables. In addition, it was shown that the small sample

performances of the GMM(pr), GMM(ex), GMM(sa), and GMM(sb) estimators are

occasionally by no means inferior to that of the PSM estimator using the large size

of pre-sample history for situations where each of these estimators are valid, and

further the GMM(pr), GMM(ex), GMM(sa), and GMM(sb) estimators perform well

in situations where the PSM estimator is not valid.
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Table 1: Monte Carlo results for strictly exogenous xit, T = 4, bias and rmse
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1; ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.5; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.259 0.267 0.275 0.277 0.277 0.278
β 0.543 0.642 0.570 0.633 0.555 0.567

WG γ −0.454 0.464 −0.446 0.448 −0.447 0.448
β −0.261 0.272 −0.261 0.264 −0.261 0.262

GMM(qd) γ(99) −0.272 0.372 −0.107 0.153 −0.068 0.109
β(99) −0.256 0.347 −0.136 0.206 −0.091 0.160
γ(1) −0.281 0.415 −0.108 0.166 −0.063 0.114
β(1) −0.246 0.377 −0.126 0.224 −0.075 0.175

GMM(pr) γ(99) −0.100 0.203 −0.039 0.087 −0.025 0.065
β(99) −0.170 0.277 −0.072 0.144 −0.043 0.118
γ(1) −0.093 0.199 −0.031 0.088 −0.019 0.068
β(1) −0.148 0.278 −0.053 0.151 −0.026 0.128

GMM(ex) γ(99) −0.093 0.221 −0.028 0.087 −0.019 0.063
β(99) −0.109 0.256 −0.033 0.126 −0.019 0.095
γ(1) −0.090 0.212 −0.025 0.087 −0.017 0.063
β(1) −0.099 0.253 −0.027 0.128 −0.015 0.094

PSM γ(4) 0.136 0.158 0.160 0.166 0.162 0.165
β(4) 0.198 0.316 0.214 0.243 0.211 0.221
γ(8) 0.108 0.132 0.128 0.135 0.130 0.134
β(8) 0.141 0.227 0.154 0.177 0.153 0.162
γ(25) 0.048 0.092 0.063 0.075 0.066 0.072
β(25) 0.062 0.152 0.065 0.088 0.066 0.076
γ(50) 0.023 0.085 0.036 0.053 0.038 0.047
β(50) 0.036 0.135 0.035 0.064 0.036 0.050

Notes: (1) The number of replications is 1000. (2) The instrument sets for GMM
estimators include no time dummies. (3) The replications where no convergence of
the estimations is achieved are eliminated when calculating the values of the Monte
Carlo statistics. Their rates are below about one percent. (4) The individuals where
the pre-sample means are zero are eliminated in each replication when estimating the
parameters of interest using the PSM estimator. The number of these individuals is
fairly small for each replication. (5) Although there may be a few replications where
the Level and PSM estimators generate the estimates of γ and β with their absolute
values exceeding 10, these replications are eliminated when calculating the values of
the Monte Carlo statistics. The values of the statistics obtained by conducting the
eliminations are written in an italic type for the Level and PSM estimators. (6) The
values of the Monte Carlo statistics are exhibited in the table, which are obtained
using the true values of γ and β as the starting values in the optimization for each
replication. The values of the statistics obtained using the true values are not much
different from those obtained using two different types of the starting values. The
differences are below about 0.01 in terms of the absolute value in almost all cases.
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Table 2: Monte Carlo results for strictly exogenous xit, T = 8, bias and rmse
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1; ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.5; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.263 0.268 0.275 0.276 0.277 0.277
β 0.538 0.592 0.552 0.565 0.554 0.560

WG γ −0.189 0.197 −0.183 0.185 −0.184 0.185
β −0.128 0.142 −0.126 0.129 −0.127 0.128

GMM(qd) γ(99) −0.315 0.332 −0.100 0.109 −0.060 0.069
β(99) −0.285 0.298 −0.141 0.151 −0.090 0.099
γ(1) −0.237 0.273 −0.075 0.094 −0.043 0.061
β(1) −0.238 0.270 −0.104 0.131 −0.059 0.088

GMM(pr) γ(99) −0.017 0.138 −0.029 0.049 −0.025 0.036
β(99) −0.170 0.230 −0.093 0.112 −0.061 0.074
γ(1) −0.002 0.133 −0.026 0.052 −0.022 0.041
β(1) −0.133 0.210 −0.060 0.094 −0.039 0.070

GMM(ex) γ(99) 0.005 0.173 −0.011 0.057 −0.015 0.032
β(99) −0.136 0.217 −0.046 0.079 −0.028 0.046
γ(1) 0.015 0.170 −0.014 0.057 −0.017 0.035
β(1) −0.124 0.211 −0.039 0.073 −0.025 0.044

PSM γ(4) 0.145 0.155 0.163 0.166 0.164 0.166
β(4) 0.192 0.229 0.212 0.221 0.213 0.219
γ(8) 0.116 0.127 0.132 0.135 0.133 0.135
β(8) 0.140 0.174 0.155 0.164 0.157 0.162
γ(25) 0.058 0.077 0.068 0.073 0.069 0.072
β(25) 0.061 0.098 0.068 0.078 0.069 0.075
γ(50) 0.029 0.059 0.039 0.047 0.040 0.044
β(50) 0.030 0.076 0.037 0.049 0.038 0.045

Notes: See Table 1.
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Table 3: Monte Carlo results for strictly exogenous xit, T = 8, bias and rmse
(Situation of considerably persistent yit and xit)

γ = 0.7;β = 1;π = 1; ρ = 0.9;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.05; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.170 0.174 0.180 0.181 0.183 0.183
β 0.421 0.669 0.425 0.471 0.428 0.455

WG γ −0.251 0.258 −0.245 0.246 −0.244 0.245
β −0.369 0.403 −0.367 0.373 −0.367 0.371

GMM(qd) γ(99) −0.496 0.515 −0.145 0.160 −0.078 0.090
β(99) −0.706 0.772 −0.465 0.549 −0.347 0.409
γ(1) −0.361 0.415 −0.109 0.143 −0.060 0.084
β(1) −0.696 0.880 −0.412 0.595 −0.272 0.406

GMM(pr) γ(99) 0.034 0.163 −0.004 0.068 −0.013 0.042
β(99) −0.370 0.610 −0.314 0.416 −0.253 0.318
γ(1) 0.035 0.155 −0.017 0.069 −0.019 0.049
β(1) −0.347 0.631 −0.215 0.371 −0.175 0.289

GMM(ex) γ(99) 0.066 0.201 0.024 0.094 0.005 0.050
β(99) −0.476 0.845 −0.134 0.342 −0.052 0.160
γ(1) 0.073 0.196 −0.001 0.072 −0.008 0.046
β(1) −0.482 0.863 −0.090 0.247 −0.051 0.144

PSM γ(4) 0.115 0.125 0.133 0.136 0.137 0.139
β(4) 0.046 0.460 0.070 0.289 0.066 0.167
γ(8) 0.105 0.115 0.122 0.125 0.126 0.127
β(8) 0.011 0.360 0.025 0.165 0.024 0.119
γ(25) 0.076 0.089 0.091 0.094 0.094 0.096
β(25) −0.017 0.206 −0.004 0.100 −0.004 0.074
γ(50) 0.056 0.073 0.069 0.073 0.072 0.074
β(50) −0.009 0.182 −0.001 0.081 −0.001 0.060

Notes: See Table 1. Further, (7) The values of the Monte Carlo statistics written in
an italic type for the GMM estimators are obtained using one of the two different
types of the starting values, whose differences from those obtained using another
are below about 0.01 in terms of the absolute value. The reason why these values
are exhibited in the table is that the values of the statistics obtained using the true
values are slightly different from those obtained using the two different values.
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Table 4: Monte Carlo results for strictly exogenous xit, T = 8, bias and rmse
(Situation of considerably persistent yit and extremely persistent xit)

γ = 0.7;β = 1;π = 1; ρ = 0.95;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.015; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.175 0.178 0.183 0.184 0.184 0.184
β 0.244 0.524 0.250 0.322 0.234 0.272

WG γ −0.274 0.280 −0.272 0.273 −0.271 0.272
β −0.367 0.469 −0.360 0.380 −0.363 0.373

GMM(qd) γ(99) −0.540 0.561 −0.156 0.175 −0.075 0.091
β(99) −0.682 0.927 −0.513 0.820 −0.401 0.661
γ(1) −0.449 0.511 −0.138 0.189 −0.070 0.108
β(1) −0.746 1.378 −0.588 1.148 −0.379 0.829

GMM(pr) γ(99) 0.034 0.165 0.011 0.081 0.002 0.049
β(99) −0.237 0.797 −0.304 0.564 −0.280 0.474
γ(1) 0.042 0.167 0.002 0.082 −0.005 0.056
β(1) −0.236 0.810 −0.176 0.546 −0.150 0.467

GMM(ex) γ(99) 0.061 0.193 0.038 0.106 0.014 0.059
β(99) −0.421 1.240 −0.116 0.537 −0.027 0.275
γ(1) 0.069 0.187 0.006 0.085 −0.004 0.056
β(1) −0.423 1.249 −0.041 0.340 −0.027 0.225

PSM γ(4) 0.112 0.122 0.128 0.131 0.131 0.132
β(4) −0.205 0.406 −0.185 0.250 −0.196 0.223
γ(8) 0.101 0.111 0.116 0.119 0.118 0.119
β(8) −0.248 0.385 −0.231 0.270 −0.240 0.258
γ(25) 0.074 0.087 0.087 0.091 0.089 0.091
β(25) −0.236 0.332 −0.224 0.248 −0.233 0.245
γ(50) 0.058 0.073 0.070 0.074 0.071 0.073
β(50) −0.173 0.277 −0.165 0.190 −0.173 0.184

Notes: See Table 1. Further, (7) The values of the Monte Carlo statistics written in
an italic type for the GMM estimators are obtained using one of the two different
types of the starting values, whose differences from those obtained using another
are below about 0.01 in terms of the absolute value. The reason why these values
are exhibited in the table is that the values of the statistics obtained using the true
values are slightly different from those obtained using the two different values.
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Table 5: Monte Carlo results for strictly exogenous xit, T = 4,
mcsd and mcmse for GMM estimators
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1; ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.5; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.254 0.202 0.110 0.130 0.085 0.103
β(99) 0.233 0.205 0.155 0.185 0.132 0.166
γ(1) 0.305 0.246 0.126 0.152 0.096 0.121
β(1) 0.285 0.259 0.185 0.224 0.157 0.205

GMM(pr) γ(99) 0.177 0.143 0.078 0.095 0.060 0.071
β(99) 0.219 0.215 0.124 0.170 0.110 0.137
γ(1) 0.176 0.164 0.083 0.104 0.065 0.078
β(1) 0.236 0.257 0.141 0.196 0.125 0.155

GMM(ex) γ(99) 0.200 0.124 0.082 0.079 0.060 0.058
β(99) 0.231 0.179 0.122 0.123 0.093 0.092
γ(1) 0.192 0.130 0.084 0.081 0.060 0.059
β(1) 0.233 0.189 0.125 0.129 0.093 0.095

Notes: See Table 1 except as described in (4) and (5).

56



Table 6: Monte Carlo results for strictly exogenous xit, T = 8,
mcsd and mcmse for GMM estimators
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1; ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.5; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.105 0.035 0.044 0.037 0.033 0.031
β(99) 0.088 0.027 0.054 0.043 0.043 0.042
γ(1) 0.135 0.081 0.057 0.056 0.044 0.045
β(1) 0.126 0.075 0.079 0.074 0.066 0.068

GMM(pr) γ(99) 0.137 0.020 0.039 0.026 0.026 0.022
β(99) 0.156 0.031 0.063 0.043 0.042 0.038
γ(1) 0.133 0.050 0.046 0.041 0.035 0.033
β(1) 0.163 0.082 0.073 0.069 0.058 0.057

GMM(ex) γ(99) 0.173 0.014 0.055 0.023 0.029 0.020
β(99) 0.169 0.021 0.064 0.033 0.036 0.028
γ(1) 0.170 0.026 0.055 0.029 0.031 0.024
β(1) 0.171 0.038 0.061 0.039 0.036 0.031

Notes: See Table 1 except as described in (4) and (5).
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Table 7: Monte Carlo results for strictly exogenous xit, T = 8,
mcsd and mcmse for GMM estimators
(Situation of considerably persistent yit and xit)

γ = 0.7;β = 1;π = 1; ρ = 0.9;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.05; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.139 0.044 0.066 0.047 0.045 0.038
β(99) 0.312 0.083 0.291 0.172 0.216 0.173
γ(1) 0.206 0.106 0.093 0.075 0.058 0.058
β(1) 0.538 0.263 0.429 0.316 0.301 0.284

GMM(pr) γ(99) 0.160 0.022 0.068 0.031 0.040 0.027
β(99) 0.485 0.110 0.274 0.180 0.192 0.165
γ(1) 0.151 0.055 0.067 0.051 0.045 0.043
β(1) 0.527 0.307 0.302 0.298 0.230 0.255

GMM(ex) γ(99) 0.190 0.013 0.091 0.025 0.050 0.022
β(99) 0.698 0.086 0.315 0.128 0.152 0.099
γ(1) 0.181 0.028 0.072 0.037 0.046 0.031
β(1) 0.717 0.167 0.230 0.146 0.135 0.113

Notes: See Table 1 except as described in (4) and (5). Further, (7) The values of the
Monte Carlo statistics written in an italic type for the GMM estimators are obtained
using one of the two different types of the starting values, whose differences from
those obtained using another are below about 0.01 in terms of the absolute value.
The reason why these values are exhibited in the table is that the values of the
statistics obtained using the true values are slightly different from those obtained
using the two different values.
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Table 8: Monte Carlo results for strictly exogenous xit, T = 8,
mcsd and mcmse for GMM estimators
(Situation of considerably persistent yit and extremely persistent xit)

γ = 0.7;β = 1;π = 1; ρ = 0.95;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.015; δ = 0;σ2
ε = 0.5;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 0;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.149 0.048 0.079 0.054 0.052 0.044
β(99) 0.628 0.166 0.640 0.364 0.525 0.373
γ(1) 0.244 0.122 0.128 0.091 0.082 0.068
β(1) 1.158 0.489 0.985 0.600 0.738 0.536

GMM(pr) γ(99) 0.162 0.023 0.080 0.034 0.049 0.029
β(99) 0.761 0.189 0.475 0.324 0.383 0.315
γ(1) 0.162 0.060 0.082 0.056 0.055 0.046
β(1) 0.775 0.530 0.517 0.538 0.443 0.454

GMM(ex) γ(99) 0.183 0.014 0.099 0.026 0.058 0.023
β(99) 1.166 0.160 0.525 0.233 0.273 0.170
γ(1) 0.174 0.030 0.085 0.043 0.056 0.038
β(1) 1.175 0.304 0.338 0.249 0.224 0.182

Notes: See Table 1 except as described in (4) and (5). Further, (7) The values of the
Monte Carlo statistics written in an italic type for the GMM estimators are obtained
using one of the two different types of the starting values, whose differences from
those obtained using another are below about 0.01 in terms of the absolute value.
The reason why these values are exhibited in the table is that the values of the
statistics obtained using the true values are slightly different from those obtained
using the two different values.
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Table 9: Monte Carlo results for predetermined xit, T = 4, bias and rmse
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.25; δ = 1;σ2
ε = 0.25;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.242 0.254 0.259 0.263 0.263 0.265
β 0.232 0.382 0.243 0.287 0.238 0.258

WG γ −0.523 0.540 −0.520 0.525 −0.518 0.520
β −0.289 0.298 −0.289 0.290 −0.290 0.291

GMM(qd) γ(99) −0.322 0.443 −0.138 0.205 −0.087 0.138
β(99) −0.259 0.358 −0.140 0.213 −0.089 0.163
γ(1) −0.318 0.474 −0.133 0.213 −0.081 0.146
β(1) −0.242 0.374 −0.120 0.224 −0.070 0.184

GMM(pr) γ(99) −0.090 0.272 −0.043 0.140 −0.028 0.093
β(99) −0.172 0.306 −0.072 0.189 −0.037 0.140
γ(1) −0.079 0.278 −0.039 0.135 −0.022 0.097
β(1) −0.140 0.318 −0.052 0.195 −0.019 0.153

GMM(ex) γ(99) −0.097 0.300 −0.112 0.177 −0.132 0.167
β(99) −0.343 0.425 −0.313 0.329 −0.312 0.319
γ(1) −0.102 0.301 −0.123 0.182 −0.139 0.171
β(1) −0.342 0.424 −0.307 0.323 −0.310 0.318

GMM(sa) γ(99) −0.023 0.183 −0.025 0.101 −0.019 0.077
β(99) −0.101 0.245 −0.035 0.133 −0.023 0.104
γ(1) −0.010 0.182 −0.021 0.102 −0.015 0.079
β(1) −0.072 0.243 −0.022 0.137 −0.014 0.110

GMM(sb) γ(99) −0.019 0.193 −0.025 0.102 −0.019 0.077
β(99) −0.137 0.284 −0.043 0.139 −0.027 0.108
γ(1) −0.007 0.192 −0.020 0.104 −0.015 0.079
β(1) −0.110 0.291 −0.028 0.147 −0.017 0.116

PSM γ(4) 0.132 0.166 0.161 0.170 0.164 0.171
β(4) 0.075 0.231 0.093 0.141 0.091 0.163
γ(8) 0.108 0.146 0.132 0.143 0.136 0.142
β(8) 0.050 0.174 0.069 0.108 0.066 0.114
γ(25) 0.046 0.107 0.069 0.089 0.071 0.083
β(25) 0.019 0.178 0.030 0.067 0.027 0.054
γ(50) 0.017 0.098 0.039 0.068 0.040 0.058
β(50) 0.003 0.123 0.017 0.057 0.014 0.042

Notes: See Table 1.
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Table 10: Monte Carlo results for predetermined xit, T = 8, bias and rmse
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.25; δ = 1;σ2
ε = 0.25;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.246 0.253 0.262 0.264 0.263 0.264
β 0.237 0.286 0.239 0.254 0.237 0.243

WG γ −0.242 0.253 −0.240 0.243 −0.239 0.241
β −0.153 0.163 −0.157 0.159 −0.157 0.158

GMM(qd) γ(99) −0.394 0.422 −0.149 0.167 −0.087 0.100
β(99) −0.290 0.308 −0.154 0.167 −0.102 0.115
γ(1) −0.295 0.348 −0.106 0.135 −0.060 0.084
β(1) −0.230 0.268 −0.110 0.136 −0.065 0.095

GMM(pr) γ(99) 0.046 0.197 0.007 0.089 −0.010 0.051
β(99) −0.175 0.259 −0.095 0.133 −0.062 0.085
γ(1) 0.058 0.187 −0.001 0.082 −0.010 0.055
β(1) −0.118 0.221 −0.042 0.098 −0.028 0.075

GMM(ex) γ(99) 0.118 0.236 0.100 0.162 0.063 0.117
β(99) −0.426 0.490 −0.340 0.368 −0.302 0.316
γ(1) 0.133 0.242 0.068 0.143 0.020 0.092
β(1) −0.415 0.483 −0.313 0.341 −0.276 0.288

GMM(sa) γ(99) −0.078 0.131 −0.040 0.063 −0.027 0.045
β(99) −0.175 0.214 −0.080 0.103 −0.051 0.069
γ(1) −0.003 0.100 −0.012 0.056 −0.009 0.042
β(1) −0.098 0.171 −0.033 0.082 −0.019 0.059

GMM(sb) γ(99) −0.071 0.134 −0.035 0.064 −0.024 0.045
β(99) −0.192 0.236 −0.088 0.114 −0.055 0.075
γ(1) 0.008 0.109 −0.008 0.057 −0.007 0.043
β(1) −0.125 0.204 −0.041 0.090 −0.024 0.062

PSM γ(4) 0.143 0.156 0.165 0.170 0.168 0.171
β(4) 0.093 0.147 0.096 0.112 0.096 0.104
γ(8) 0.117 0.133 0.138 0.144 0.141 0.144
β(8) 0.072 0.124 0.073 0.092 0.073 0.081
γ(25) 0.057 0.085 0.075 0.084 0.078 0.083
β(25) 0.032 0.088 0.033 0.050 0.034 0.044
γ(50) 0.026 0.068 0.042 0.056 0.046 0.054
β(50) 0.017 0.077 0.018 0.038 0.018 0.031

Notes: See Table 1.
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Table 11: Monte Carlo results for predetermined xit, T = 8, bias and rmse
(Situation of considerably persistent yit and xit)

γ = 0.7;β = 1;π = 1/(1 − γ); ρ = 0.9;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0;σ2

w = 0.5; δ = 1;σ2
ε = 0.05;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.176 0.180 0.187 0.188 0.188 0.188
β 0.182 0.438 0.210 0.310 0.199 0.240

WG γ −0.274 0.281 −0.270 0.272 −0.266 0.267
β −0.443 0.468 −0.450 0.454 −0.444 0.446

GMM(qd) γ(99) −0.559 0.583 −0.182 0.203 −0.096 0.111
β(99) −0.769 0.834 −0.578 0.656 −0.415 0.484
γ(1) −0.447 0.511 −0.151 0.194 −0.078 0.113
β(1) −0.791 0.998 −0.488 0.650 −0.308 0.452

GMM(pr) γ(99) 0.056 0.174 0.014 0.091 0.002 0.060
β(99) −0.352 0.617 −0.346 0.449 −0.251 0.335
γ(1) 0.059 0.172 −0.002 0.088 −0.007 0.064
β(1) −0.301 0.596 −0.210 0.376 −0.138 0.281

GMM(ex) γ(99) 0.101 0.215 0.072 0.136 0.044 0.100
β(99) −0.864 1.106 −0.716 0.793 −0.656 0.698
γ(1) 0.109 0.209 0.035 0.111 0.010 0.077
β(1) −0.822 1.091 −0.644 0.710 −0.587 0.620

GMM(sa) γ(99) −0.060 0.113 −0.026 0.056 −0.017 0.037
β(99) −0.433 0.540 −0.265 0.322 −0.169 0.222
γ(1) 0.017 0.091 −0.007 0.050 −0.006 0.036
β(1) −0.338 0.499 −0.160 0.264 −0.090 0.189

GMM(sb) γ(99) −0.094 0.148 −0.026 0.063 −0.013 0.040
β(99) −0.437 0.574 −0.310 0.389 −0.211 0.274
γ(1) 0.004 0.106 −0.003 0.056 −0.002 0.039
β(1) −0.406 0.619 −0.219 0.342 −0.129 0.235

PSM γ(4) 0.126 0.136 0.145 0.148 0.148 0.149
β(4) −0.093 0.394 −0.071 0.193 −0.064 0.222
γ(8) 0.116 0.127 0.135 0.138 0.137 0.139
β(8) −0.116 0.320 −0.090 0.275 −0.091 0.172
γ(25) 0.088 0.102 0.106 0.110 0.108 0.110
β(25) −0.095 0.251 −0.080 0.178 −0.078 0.114
γ(50) 0.064 0.083 0.081 0.087 0.083 0.086
β(50) −0.065 0.197 −0.052 0.113 −0.048 0.080

Notes: See Table 1.
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Table 12: Monte Carlo results for predetermined xit, T = 8, bias and rmse
(Situation of considerably persistent yit and extremely persistent xit)

γ = 0.7;β = 1;π = 1/(1 − γ); ρ = 0.95;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0;σ2

w = 0.5; δ = 1;σ2
ε = 0.015;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.176 0.180 0.186 0.187 0.187 0.187
β 0.116 0.436 0.107 0.254 0.104 0.168

WG γ −0.285 0.290 −0.279 0.281 −0.280 0.280
β −0.445 0.517 −0.434 0.450 −0.442 0.450

GMM(qd) γ(99) −0.558 0.581 −0.168 0.188 −0.082 0.099
β(99) −0.777 0.985 −0.636 0.943 −0.516 0.757
γ(1) −0.483 0.551 −0.167 0.229 −0.082 0.127
β(1) −0.836 1.426 −0.637 1.167 −0.438 0.909

GMM(pr) γ(99) 0.037 0.169 0.012 0.083 0.006 0.057
β(99) −0.203 0.781 −0.282 0.536 −0.269 0.478
γ(1) 0.047 0.169 −0.001 0.088 −0.001 0.063
β(1) −0.192 0.847 −0.159 0.550 −0.110 0.455

GMM(ex) γ(99) 0.073 0.192 0.049 0.118 0.029 0.084
β(99) −0.839 1.422 −0.603 0.772 −0.541 0.632
γ(1) 0.081 0.190 0.016 0.105 0.005 0.074
β(1) −0.805 1.406 −0.545 0.703 −0.496 0.572

GMM(sa) γ(99) −0.064 0.118 −0.010 0.045 −0.006 0.032
β(99) −0.301 0.553 −0.241 0.385 −0.188 0.307
γ(1) 0.019 0.095 0.008 0.049 0.003 0.035
β(1) −0.248 0.579 −0.143 0.367 −0.107 0.288

GMM(sb) γ(99) −0.105 0.156 −0.014 0.049 −0.006 0.033
β(99) −0.263 0.613 −0.291 0.474 −0.243 0.376
γ(1) −0.007 0.105 0.008 0.053 0.003 0.036
β(1) −0.278 0.704 −0.230 0.479 −0.170 0.364

PSM γ(4) 0.117 0.127 0.133 0.136 0.135 0.137
β(4) −0.282 0.451 −0.293 0.326 −0.291 0.309
γ(8) 0.106 0.116 0.121 0.124 0.123 0.125
β(8) −0.319 0.438 −0.330 0.353 −0.327 0.339
γ(25) 0.079 0.092 0.094 0.097 0.096 0.098
β(25) −0.286 0.372 −0.295 0.314 −0.296 0.304
γ(50) 0.061 0.076 0.075 0.080 0.077 0.079
β(50) −0.206 0.293 −0.211 0.230 −0.212 0.221

Notes: See Table 1 except for (5). Instead of (5), (8) The values of the Monte Carlo
statistics written in an italic type for the PSM estimators are obtained using one of
the two different types of the starting values, whose differences from those obtained
using another are below about 0.01 in terms of the absolute value. The reason why
these values are exhibited in the table is that the values of the statistics obtained
using the true values are slightly different from those obtained using the two different
values.
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Table 13: Monte Carlo results for predetermined xit, T = 4,
mcsd and mcmse for GMM estimators
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.25; δ = 1;σ2
ε = 0.25;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.305 0.213 0.152 0.149 0.107 0.121
β(99) 0.246 0.184 0.160 0.166 0.137 0.151
γ(1) 0.352 0.264 0.167 0.176 0.121 0.141
β(1) 0.285 0.235 0.190 0.214 0.170 0.190

GMM(pr) γ(99) 0.257 0.158 0.133 0.113 0.089 0.093
β(99) 0.254 0.211 0.175 0.164 0.135 0.141
γ(1) 0.266 0.181 0.130 0.127 0.094 0.106
β(1) 0.286 0.254 0.188 0.193 0.152 0.168

GMM(sa) γ(99) 0.182 0.094 0.097 0.075 0.074 0.063
β(99) 0.224 0.147 0.129 0.106 0.101 0.087
γ(1) 0.182 0.102 0.100 0.079 0.078 0.065
β(1) 0.232 0.169 0.135 0.113 0.109 0.092

GMM(sb) γ(99) 0.192 0.093 0.099 0.075 0.074 0.063
β(99) 0.249 0.151 0.132 0.108 0.104 0.088
γ(1) 0.192 0.101 0.103 0.078 0.078 0.065
β(1) 0.269 0.176 0.144 0.116 0.115 0.094

Notes: See Table 1 except as described in (4) and (5).
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Table 14: Monte Carlo results for predetermined xit, T = 8,
mcsd and mcmse for GMM estimators
(Situation of moderately persistent yit and xit)

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.5;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 1;σ2

w = 0.25; δ = 1;σ2
ε = 0.25;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.150 0.034 0.076 0.042 0.050 0.036
β(99) 0.104 0.022 0.065 0.035 0.054 0.035
γ(1) 0.185 0.085 0.083 0.065 0.059 0.054
β(1) 0.137 0.064 0.081 0.063 0.069 0.061

GMM(pr) γ(99) 0.192 0.019 0.089 0.029 0.050 0.026
β(99) 0.191 0.029 0.093 0.042 0.058 0.037
γ(1) 0.178 0.053 0.082 0.050 0.054 0.042
β(1) 0.186 0.085 0.088 0.071 0.069 0.059

GMM(sa) γ(99) 0.105 0.014 0.049 0.025 0.036 0.023
β(99) 0.123 0.019 0.064 0.032 0.047 0.030
γ(1) 0.100 0.033 0.054 0.035 0.041 0.030
β(1) 0.140 0.054 0.076 0.049 0.056 0.042

GMM(sb) γ(99) 0.113 0.014 0.054 0.025 0.038 0.023
β(99) 0.138 0.019 0.072 0.032 0.050 0.030
γ(1) 0.109 0.032 0.056 0.034 0.042 0.030
β(1) 0.162 0.054 0.080 0.050 0.057 0.042

Notes: See Table 1 except as described in (4) and (5).
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Table 15: Monte Carlo results for predetermined xit, T = 8,
mcsd and mcmse for GMM estimators
(Situation of considerably persistent yit and xit)

γ = 0.7;β = 1;π = 1/(1 − γ); ρ = 0.9;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0;σ2

w = 0.5; δ = 1;σ2
ε = 0.05;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.164 0.046 0.089 0.054 0.056 0.044
β(99) 0.321 0.074 0.311 0.157 0.248 0.158
γ(1) 0.248 0.115 0.121 0.087 0.082 0.067
β(1) 0.609 0.230 0.429 0.271 0.330 0.254

GMM(pr) γ(99) 0.165 0.022 0.090 0.034 0.060 0.030
β(99) 0.507 0.111 0.287 0.177 0.221 0.164
γ(1) 0.161 0.057 0.088 0.056 0.063 0.048
β(1) 0.514 0.315 0.312 0.296 0.245 0.255

GMM(sa) γ(99) 0.095 0.016 0.049 0.026 0.033 0.023
β(99) 0.323 0.068 0.184 0.121 0.144 0.113
γ(1) 0.090 0.034 0.050 0.034 0.036 0.029
β(1) 0.366 0.184 0.210 0.178 0.166 0.154

GMM(sb) γ(99) 0.114 0.015 0.057 0.026 0.038 0.024
β(99) 0.372 0.062 0.235 0.124 0.176 0.116
γ(1) 0.106 0.033 0.056 0.035 0.039 0.030
β(1) 0.467 0.180 0.262 0.187 0.197 0.161

Notes: See Table 1 except as described in (4) and (5).
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Table 16: Monte Carlo results for predetermined xit, T = 8,
mcsd and mcmse for GMM estimators
(Situation of considerably persistent yit and extremely persistent xit)

γ = 0.7;β = 1;π = 1/(1 − γ); ρ = 0.95;κ = 0;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0;σ2

w = 0.5; δ = 1;σ2
ε = 0.015;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
mcsd mcmse mcsd mcmse mcsd mcmse

GMM(qd) γ(99) 0.159 0.048 0.085 0.058 0.055 0.046
β(99) 0.605 0.159 0.697 0.360 0.554 0.367
γ(1) 0.264 0.128 0.157 0.100 0.097 0.074
β(1) 1.155 0.469 0.977 0.572 0.796 0.517

GMM(pr) γ(99) 0.164 0.023 0.082 0.036 0.057 0.031
β(99) 0.754 0.186 0.455 0.327 0.395 0.313
γ(1) 0.162 0.062 0.088 0.059 0.063 0.048
β(1) 0.825 0.523 0.526 0.518 0.442 0.452

GMM(sa) γ(99) 0.100 0.017 0.043 0.026 0.031 0.023
β(99) 0.464 0.118 0.301 0.225 0.242 0.204
γ(1) 0.093 0.036 0.049 0.036 0.035 0.029
β(1) 0.523 0.304 0.338 0.314 0.268 0.260

GMM(sb) γ(99) 0.115 0.017 0.047 0.027 0.032 0.023
β(99) 0.554 0.111 0.374 0.235 0.286 0.218
γ(1) 0.105 0.036 0.052 0.036 0.036 0.030
β(1) 0.647 0.298 0.420 0.339 0.321 0.285

Notes: See Table 1 except as described in (4) and (5).
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Table 17: Monte Carlo results for proportional fixed effect, T = 8, bias and rmse

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.9;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0.5;σ2

w = 0.25; δ = 0.5;σ2
ε = 0.25;ϖ = 1; ϱ = 0;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.236 0.254 0.283 0.289 0.292 0.297
β 0.359 0.381 0.356 0.369 0.357 0.363

WG γ −0.271 0.301 −0.257 0.270 −0.255 0.265
β −0.229 0.254 −0.225 0.231 −0.225 0.228

GMM(qd) γ(99) −0.490 0.548 −0.256 0.316 −0.181 0.257
β(99) −0.509 0.638 −0.544 0.657 −0.499 0.639
γ(1) −0.460 0.576 −0.289 0.383 −0.236 0.345
β(1) −0.546 0.776 −0.592 0.811 −0.584 0.825

GMM(pr) γ(99) 0.028 0.202 0.036 0.127 0.031 0.111
β(99) 0.231 0.337 0.136 0.229 0.106 0.200
γ(1) 0.094 0.221 0.072 0.157 0.055 0.135
β(1) 0.294 0.397 0.213 0.298 0.173 0.249

GMM(ex) γ(99) 0.229 0.327 0.225 0.279 0.218 0.268
β(99) −0.974 1.280 −0.911 1.089 −0.916 1.072
γ(1) 0.241 0.331 0.229 0.277 0.228 0.270
β(1) −0.950 1.294 −0.898 1.087 −0.934 1.112

GMM(sa) γ(99) −0.232 0.321 −0.106 0.184 −0.067 0.164
β(99) −0.017 0.163 −0.064 0.143 −0.069 0.141
γ(1) −0.109 0.261 −0.046 0.148 −0.027 0.141
β(1) 0.065 0.209 0.008 0.137 −0.001 0.130

GMM(sb) γ(99) −0.260 0.333 −0.117 0.195 −0.069 0.164
β(99) −0.014 0.171 −0.069 0.163 −0.081 0.169
γ(1) −0.161 0.280 −0.062 0.160 −0.032 0.143
β(1) 0.081 0.238 0.003 0.167 −0.009 0.163

PSM γ(4) 0.117 0.191 0.180 0.197 0.192 0.207
β(4) 0.012 0.136 0.013 0.115 0.018 0.281
γ(8) 0.094 0.190 0.160 0.181 0.172 0.190
β(8) −0.011 0.117 −0.013 0.137 −0.018 0.129
γ(25) 0.036 0.241 0.101 0.138 0.112 0.148
β(25) −0.008 0.094 −0.015 0.076 −0.013 0.111
γ(50) 0.004 0.177 0.056 0.141 0.068 0.128
β(50) −0.003 0.084 −0.006 0.058 −0.005 0.038

Notes: See Table 1.
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Table 18: Monte Carlo results for correlated fixed effect, T = 8, bias and rmse

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.9;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0.5;σ2

w = 0.25; δ = 0.5;σ2
ε = 0.25; ϖ = 0.6; ϱ = 0.8;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.272 0.282 0.309 0.312 0.313 0.315
β 0.173 0.225 0.171 0.196 0.175 0.185

WG γ −0.263 0.285 −0.252 0.260 −0.249 0.254
β −0.227 0.254 −0.224 0.230 −0.223 0.225

GMM(qd) γ(99) −0.459 0.507 −0.201 0.252 −0.131 0.188
β(99) −0.500 0.615 −0.544 0.661 −0.430 0.553
γ(1) −0.411 0.508 −0.234 0.337 −0.183 0.270
β(1) −0.581 0.808 −0.549 0.784 −0.483 0.728

GMM(pr) γ(99) 0.021 0.208 0.029 0.103 0.018 0.073
β(99) 0.143 0.310 0.075 0.198 0.062 0.167
γ(1) 0.075 0.221 0.053 0.125 0.034 0.093
β(1) 0.177 0.338 0.130 0.226 0.116 0.196

GMM(ex) γ(99) 0.176 0.283 0.179 0.237 0.171 0.218
β(99) −0.879 1.106 −0.905 1.024 −0.906 1.004
γ(1) 0.192 0.289 0.189 0.241 0.186 0.226
β(1) −0.856 1.112 −0.886 1.019 −0.916 1.027

GMM(sa) γ(99) −0.182 0.264 −0.061 0.128 −0.036 0.105
β(99) −0.048 0.179 −0.083 0.158 −0.072 0.131
γ(1) −0.056 0.200 −0.012 0.107 −0.008 0.086
β(1) 0.008 0.189 −0.013 0.136 −0.011 0.109

GMM(sb) γ(99) −0.219 0.288 −0.072 0.138 −0.039 0.112
β(99) −0.040 0.196 −0.087 0.182 −0.084 0.159
γ(1) −0.115 0.226 −0.025 0.117 −0.013 0.096
β(1) 0.033 0.233 −0.016 0.176 −0.019 0.137

PSM γ(4) 0.164 0.189 0.212 0.221 0.219 0.225
β(4) −0.126 0.176 −0.133 0.172 −0.121 0.224
γ(8) 0.148 0.176 0.194 0.204 0.202 0.209
β(8) −0.143 0.182 −0.149 0.164 −0.145 0.152
γ(25) 0.108 0.146 0.152 0.167 0.161 0.171
β(25) −0.136 0.168 −0.140 0.150 −0.138 0.142
γ(50) 0.082 0.134 0.126 0.145 0.135 0.147
β(50) −0.123 0.152 −0.128 0.137 −0.127 0.130

Notes: See Table 1.
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Table 19: Monte Carlo results for uncorrelated fixed effect, T = 8, bias and rmse

γ = 0.5;β = 0.5;π = 1/(1 − γ); ρ = 0.9;κ = 0.1;σ2
η = 0.5; ι = 0;σ2

ζ = 0.5;
τ = 0.5;σ2

w = 0.25; δ = 0.5;σ2
ε = 0.25;ϖ = 0; ϱ = 1;σ2

ξ = 0.5;ϑ = 1;
N = 100 N = 500 N = 1000
bias rmse bias rmse bias rmse

Level γ 0.269 0.274 0.291 0.293 0.295 0.296
β −0.067 0.134 −0.067 0.085 −0.067 0.078

WG γ −0.252 0.266 −0.251 0.255 −0.247 0.249
β −0.223 0.249 −0.223 0.229 −0.226 0.228

GMM(qd) γ(99) −0.402 0.438 −0.128 0.164 −0.069 0.096
β(99) −0.478 0.591 −0.446 0.564 −0.325 0.435
γ(1) −0.343 0.424 −0.145 0.216 −0.086 0.154
β(1) −0.473 0.752 −0.356 0.607 −0.252 0.481

GMM(pr) γ(99) 0.011 0.179 0.014 0.080 0.005 0.048
β(99) −0.044 0.301 −0.070 0.199 −0.057 0.157
γ(1) 0.050 0.177 0.016 0.089 0.008 0.060
β(1) −0.020 0.296 −0.015 0.182 −0.007 0.141

GMM(ex) γ(99) 0.095 0.231 0.099 0.152 0.084 0.117
β(99) −0.848 0.980 −0.820 0.879 −0.809 0.838
γ(1) 0.116 0.237 0.112 0.160 0.107 0.135
β(1) −0.836 0.981 −0.814 0.880 −0.841 0.876

GMM(sa) γ(99) −0.114 0.176 −0.024 0.065 −0.009 0.041
β(99) −0.134 0.225 −0.124 0.172 −0.089 0.127
γ(1) −0.003 0.126 0.001 0.061 0.004 0.044
β(1) −0.098 0.215 −0.066 0.139 −0.044 0.102

GMM(sb) γ(99) −0.152 0.210 −0.027 0.072 −0.006 0.043
β(99) −0.117 0.242 −0.146 0.211 −0.117 0.165
γ(1) −0.049 0.152 −0.001 0.067 0.005 0.045
β(1) −0.073 0.251 −0.086 0.179 −0.063 0.136

PSM γ(4) 0.177 0.189 0.206 0.210 0.211 0.214
β(4) −0.242 0.262 −0.246 0.250 −0.247 0.249
γ(8) 0.161 0.175 0.191 0.195 0.196 0.199
β(8) −0.251 0.267 −0.254 0.257 −0.254 0.256
γ(25) 0.131 0.148 0.160 0.165 0.165 0.169
β(25) −0.233 0.247 −0.236 0.239 −0.237 0.238
γ(50) 0.114 0.135 0.140 0.147 0.145 0.150
β(50) −0.218 0.235 −0.220 0.223 −0.221 0.222

Notes: See Table 1.
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