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usefulness of this property by applying it to the derivation of well-known properties of the 
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1. Introduction 

One of our major purposes of this research is to investigate properties of demand 

functions for goods and financial assets when agents face multiple budgets in incomplete 

financial asset markets.  In trying to do so, we have found that Slutsky’s method of income 

compensation in contrast to Hick’s method is a more convenient rout in obtaining 

properties of demand functions since multiple budgets are present.  But analytically 

Slutsky’s method is more difficult to handle because a similar property such as the 

concavity of the minimum expenditure function is not easily available for this case.  As we 

shall point out in this paper, the optimum value function associated with the Slutskian 

method possesses only the local convexity property in contrast to the minimum expenditure 

function in the Hicksian method.   

In order to facilitate such analyses in a more systematic fashion, we find it useful first 

to establish an interesting second derivative property of an optimum value function that 

may be regarded as a second derivative envelope property.  We then show the usefulness of 

this second derivative envelope property by applying it to the derivation of well-known 

properties of the Hicksian compensated demand function, the Slutskian compensated 

demand function and the indirect utility function in the standard demand theory.  Of 

course there is nothing new in these results we obtain in this section.  What is new lies in 

the use of the second derivative envelope property in obtaining these results and 

furthermore in showing that we can obtain the usual results in sharper and more 

transparent fashion.  Finally we apply this approach using the second derivative envelope 

property in the investigation of properties of demand functions for goods and financial 

assets when agents face multiple budgets in incomplete financial asset markets.  We hope 

that the second derivative envelope property may become one of useful formulas in 

providing microeconomic properties to various economic models involving optimizing 
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behavior of agents. 

 

2. Properties of an Optimum Value Function 

We shall begin our investigation by providing useful derivative properties of the 

optimum value function for a constrained optimization problem. 

Let :f X A R× →  and  be  functions where : mg X A R× → 2C X  and A  

respectively are open subsets of mR  and kR .  Define the optimum value function 

: A Rϕ →  by 

{ }( ) max ( , ) ( , ) 0mx
f x g xϕ α α α≡ =  

where Aα ∈  defines a parameter for the optimization.  Let the Lagrangean function 

associated with the above maximization problem be written by: 

( , , ) ( , ) ( , )L x f x g xλ α α λ≡ + i α  

for mRλ∈ .  We will assume throughout this paper that, for each parameter α , the 

maximization problem is well-defined, satisfies the second-order regularity condition to be 

stated below and it yields the  solution function 1C ( )x α�  and the associated C  

Lagrange multiplier function 

1

( )λ α� .  We shall state the second-order regularity condition 

as follows. 

 

Assumption. (The second-order regularity condition)  Given Aα ∈ , let ( )x x α= �  and 

( )λ λ α= � .  Then ( , , )xxd L xλ α  is negative definite on the kernel of the linear map 

( , )xd g x α , i.e., on the linear subspace [ ]{ }( , )m
xv R d g x vα 0∈ =  where ( , )xd g x α  and 

( ,xxd L x, )λ α  respectively denote the first derivative of  with respect to g x  and the 

second derivative of  with respect to L x . 

 

By the envelope theorem in economics (see Samuelson [1947], Otani and El-Hodiri 
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[1987] and Otani [1999]), the first derivative of the optimum value function satisfies: 

( ) ( , , ) ( , ) ( , )d d L x d f x d g xα α α αϕ α λ α α λ α′= = +  

where ( , , )d L xα λ α  and ( , )d f xα α  are both (1 )k×  vectors of the first derivatives of  

and 

L

f  with respect to α , ( ,d g xα )α  is an ( )m k×  matrix of the first derivative of  

with respect to 

g

α , and all derivatives are evaluated at ( )λ λ α= �  and ( )x x α= � . 

Derivatives of ( )λ α�  and ( )x α�  satisfy the usual comparative static formula derived 

by the implicit differentiation of the first-order conditions: 

x x

d gdH
d f d gdx

α

α α

λ
λ

   
= −   +  

�

i�
 

where  and  is the bordered Hessian of the Lagrangean given 

as follows: 

1

m j
x jj

d g d gαλ λ
=

≡∑i xα

)x xx xx x x gα α

H

( )

0mm x

x xx xx

d g
H

d g d f d gλ

 
 ≡ ′ + i

. 

We rewrite the above comparative static formula as: 

( )xd g dx d gα= −� , and 

( ) ( ) (d g d d f d g dx d f dλ λ λ′ + + = − +� �i i . 

When we differentiate ( )dϕ α  once more, we obtain that 

( ) ( ) (2 ( )d d g d d f d g dx d f d gϕ α λ λ λ′= + + + +� �i i )x xα α α αα αα

)xα

 

Using the comparative static formula, we have that ( ) ( ) (d g dx d g′ ′= − � ′

)x xx xx x xα α αλ

 and  

( ) ( ) ( ) ( ) ( )( ) ( ) (d g d dx d g d dx d f d g dx dx d f d gλ λ λ′ ′ ′ ′ ′= − = + + +� �� � � �i i . 

Substituting the above into 2d ϕ  yields 

 4



( ) ( )( ) ( ) (2 ( )d dx d f d g dx dx d f d gϕ α λ λ′ ′= + + +� � �i i )xx xx x xα α  

( )( ) ( )x xd f d g dx d f d gα α αα αλ λ+ + + +�i i α

xx x xα α αα+

 

( ) ( )( ) ( ) ( ) ( )( )dx d L dx dx d L d L dx d L′ ′= + +� � � �  

( ) ( ) ( ) ( )2
( , ), ,xx x

k x
x k

d L d L dx
dx I d x d L d x

d L d L I
α

α α α
α αα

α α
     ′′   = =            

�
� � �  

where kI  denotes the  identity matrix and  denotes the second derivative 

of  with respect to 

(k k×

( , )

) L2
( , )xd α

L x α .  Note that the above formula does not directly entail the 

second derivatives of ( )x α�  and ( )λ α� .  Thus in this regard, the above result can be 

considered as a second derivative version of the envelope theorem.  We state this result as 

a theorem. 

 

Theorem 1. (The second derivative envelope property)  The second derivative of the 

optimum value function satisfies the following formula: 

( ) ( ) ( ) ( ) ( )2 ( )d dx d L dx dx d L d L dx dϕ α ′ ′= + +� � � �xx x x Lα α αα+  

        ( ) ( ) ( ) ( )2
( , ), ,xx x

k x
x k

d L d L dx
dx I d x d L d x

d L d L I
α

α α α
α αα

α α
     ′′               

�
� � �  = =

where ( , )xλ  is evaluated at ( )( ), ( )xλ α α� � . 

 

For the rest of the paper, we will show how the above formula can be usefully applied to 

various cases of demand theory.  In doing so, we shall maintain the same set of 

assumptions we have indicated in this section for each application. 
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3.  Applications to the Standard Theory of Demand 

In order to appreciate the usefulness of the above result, we will first look at the 

standard theory of demand.  In particular we will show how the above second derivative 

envelope property can be successfully applied in obtaining properties of the Hicksian 

compensated demand function, the Slutskian compensated demand function and the 

indirect utility function. 

 

3. 1  Hicksian compensated demand 

The minimum expenditure function ( , )m p υ  in the standard demand theory is defined 

as follows. 

{ }( , ) max ( ) ,m p p x u x x Pυ υ≡ ≥ Ai
x

∈  

where  is the interior of PA R+
A ,  is a C  utility function, :u P R→A 2 Rυ ∈  is a utility 

level and p P∈ A  is a price vector.  We note that the second-order regularity condition for 

this problem is that the utility function satisfies the regular strict quasi-concavity, i.e., 

 is negative definite on the subspace 2 (d u x) [ ]( )Ke u x

PA

r d .  We will assume that this 

minimization problem yields a solution in .  The Lagrangean function of this 

minimization problem can be written as: 

( )( , ; , ) ( )L x p p x u xµ υ µ υ≡ + −i . 

Let ( , )g p υ  be the Hicksian compensated demand function and ( , )pµ υ

g p

 be the 

associated Lagrange multiplier.  (We apologize the use of the notation  which was used 

to indicate a constraint in the previous section.)  As in the last section, both 

g

( , )υ  and 

( , )pµ υ  are assumed to be .  Then by the envelope theorem, we have that: 1C

[ ]( , ) ( , )d m p g pp υ υ ′= , and 
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( , ) ( , )d m p pυ υ µ υ= . 

It is well-known and immediate from the above result that the second derivative  

and  are given as follows: 

ppd m

pd mυ

( , ) ( , )pp pd m p d g pυ υ= , and 

( , ) ( , )pd m p d g pυ υυ υ= . 

Thus the second derivative  is the derivative of the Hicksian compensated demand 

function with respect to 

ppd m

p  called the Slutsky matrix. 

For this expenditure minimization problem, our formula on the second derivative of the 

optimum value function yields 

( )
( )

2
( 1)

1
( 1) 1

1
( 1) ( 1) ( 1) ( 1) 1

0
0

0 0 0
0 1

0 0 0 0 1

p
ppp p

p

d u I d g d gd gd m d m I
I I

d m d m
d g

υ
υ

υ υυ
υ

µ × +
×

× × + ×
×

+ × + × + × + ×

 −   ′      =      ′          

A A A
A A

A A A A A A A
A

A A A A A A A

. 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

2 2

2 2

p p p p p

p

d g d u d g d g d g d g d u d g d g

d g d u d g d g d g d u d g

υ υ

υ υ υ

µ µ

µ µ

 ′ ′ ′− + + − =  ′ ′ ′− + −  υ

+

)

1A

. 

If we compare these two expressions on the second derivatives of the minimum 

expenditure function, we find that 

( ) ( )(2( , ) ( , ) ( , )pp p p p pd m p d g p d g p d g d u d gυ υ υ µ ′′ = = =  , and 

( ) ( )( )2 0pd g d u d gυ ×
′ = . 

We may state these as the following lemma. 

 

Lemma 1: The second derivative of the minimum expenditure function m p( , )υ  

satisfies 
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( ) ( )( ) ( )

( ) ( ) ( )( )

2

2

p ppp p

p

d g d u d g d gd m d m
d m d m d g d g d u d g

υυ

υ υυ
υ υ

µ

µ

 ′
   ==   ′ ′  −  υ

. 

 

As we can see from Lemma 1, the Slutsky matrix pp pd m d g=  can be expressed directly in 

terms of the second derivative  of the utility function.  We believe that this may be 

the first time such a relation is exhibited.  The following technical facts are also useful to 

state as a lemma. 

2d u

 

Lemma 2: (i) [ ] [ ]( )
ipd g Ker du x p ⊥∈ =  and [ ]d g pυ

⊥∉ , (ii) , and 

(iii) if 

( ) 1prank d g = −A

[ ]pη ⊥∈  and 0η ≠ A pd g η , then 0≠  . 

Proof: 

(i) Since ( , )g p υ  is homogeneous of degree 0 in p and  is symmetric, 

.  From the first-order condition of the minimization, we have that 

pd g

( )p pd g p d= A

[

( ) 0g p′ =

] [ ]du p= .  Also since [ ]( , )pu g υ υ= , we get that ( )( )gυ 1du d = .  Thus we must have 

[ ] [ ]( )u x∈ =
ipd g Ker d p ⊥  and [ ]d gυ p ⊥

∉ . 

(ii) and (iii) From the constraint ( ) 0u xυ − =  and the first-order conditions 

( ) 0p du xµ− = , we can obtain the following system of comparative static equations 

( )
( ) ( )

( )2

0 0 11 1
1 0

p

p

du d d
Id g d gdu d u

υ

υ

µ µ µ µ
µ

     
  =   ′      A A

 

From this we can assert that the rank of pd g d gυ    must be  and hence the rank of 

 must be ( .  The assertion in (iii) then follows.,  

A

pd g 1−A )

 

By the second-order regularity condition, we can conclude that for every [ ]pη ⊥
∈ , 
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0η ≠ A , 

[ ]p ⊥

( 1−A

G p

0x =

( ) ( ) ( ) [ ]( )2 0pp p p p p xx pd m d g d g d u d g d g d L d gη η η η µη η η η′ ′′ ′ ′ ′    = = = −      < . 

We may state this as the following proposition. 

 

Proposition 1.  The Slutsky matrix ( ),pd g p υ  is negative definite on the subspace 

. 

 

As is usually done, it is easy to show that the Slutsky matrix ( , )pd g p υ  is negative 

semi-definite from the concavity and the differentiability of ( ,m p )υ  with respect to p .  

But our result provides us with a sharper property of the Slutsky matrix, in particular any 

 principal minor submatrix of ( , )pd g p υ  is nonsingular.  This property is usually 

obtained by using the inversion formula of a partitioned matrix.  But we are able to show 

it more directly from the second-order condition because we are able to express the Slutsky 

matrix directly in terms of .  (See Otani and El-Hodiri [1987] for an alternative 

approach to get this result.) 

2d u

)

 

3. 2  Slutsky’s Method of Compensation and the Slutskian Compensated Demand 

Our next application concerns Slutsky’s method of compensation and the resulting 

Slutskian compensated demand function.  (See Katzner [1970], Section 3.4, and Otani and 

El-Hodiri [1987], Chapter 2 Section 3, for Hicks’ and Slutsky’s methods of compensation.)  

Given , the Slutskian compensated demand function is defined by 0 0x �
0 0( , ) ( , )x h p p x≡ ⋅  

where  denotes the ordinary utility maximizing demand function.  Let ( , )h p w

0( , )G p x .  Then the Slutskian compensated demand function can be considered as a 0
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solution to the utility maximizing problem with a budget constraint .  Let 

the optimum value function for this problem be defined by: 

0( )p x x⋅ − ≥

p

( )prank d G =

G

0

{ }0 0( , ) max ( ) ( ) 0p x u x p x xϕ ≡ ⋅ −
x

≥  

and the Lagrangean function of this maximization problem be written as: 

0 0( , ; , ) ( ) ( )L x p x u x p x xγ ≡ + ⋅ − . 

We let the Lagrange multiplier function associated with the above maximization be 

denoted by 0( , )p xγ .  Then the second derivatives of ϕ  with respect to  evaluated at 

0p  becomes 
0 0 0 0 0( , ) ( ,pp pd p x d G p xϕ γ= − )

0 )

 

where 0 0( ,p xγ γ= .  Thus the matrix  is symmetric.  If we apply the 

second derivative formula to 

0( , )pd G p x

ppd ϕ , we obtain that 

( ) ( )( ) ( ) ( )2d d G d u d G d G dϕ γ′ ′= −pp p p p pGγ− . 

Evaluating at 0p  and using the symmetry of  yield pd G

( )( ) ( )(0 0 0 0 0 2 0 0 0( , ) 1 ( , ) ( ) ( , )p p pd G p x d G p x d u x d G p xγ ′= )

0

 

As in the Hicksian case, we can show the following Lemma and Proposition whose 

proofs are omitted since they are similar to those of Lemma 2 and Proposition 1. 

 

Lemma 3: (i) 0( )
ipd G Ker du x p

⊥
  ∈ =     and 0d G pυ

⊥
 ∉   , (ii) 1−A , 

and (iii) if  and 0p
⊥

   0η ∈ η ≠ A , then 0ηpd G  ≠   where derivatives of  are 

evaluated at 0 0 )( ,p x . 
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Proposition 2.  The matrix  is negative definite on the subspace 0 0( ,d G p x )p
0p

⊥
   . 

 

In our framework, it is well known and easy to show that ( , )x g p υ=  if and only if 

( , )x G p x=  and ( , )p xυ ϕ= .  Also as is well-known, if ( , )x g p υ= , then 

( ) ( )( , ) ( , ) , ( , ) , ( , ) ( , )G p x h p p x h p p g p h p m p g pυ υ υ= ⋅ = ⋅ = = . 

Thus we have ( , ) ( , )p pd g p d G p xυ =  provided that ( , )x g p υ= . 

It should be noted that unlike the minimum expenditure function which is concave in 

p , the second derivative of ϕ  is positive definite on 0p
⊥

    only when it is evaluated at 

0 0( , )p x .  Thus ϕ  is a convex function only locally around 0 0( , )p x  and, without using 

the second derivative envelope property, it would not be so easy to assert the negative 

semi-definiteness of the Slutsky matrix via the Slutskian compensated demand function.  

As we show in Section 4, when there are multiple budgets, the Hicksian method can not be 

directly adopted, but the Slutskian method becomes directly applicable.  In such an 

occasion, our approach will provide a useful avenue as we show in Section 4. 

 

3. 3  Properties of the Indirect Utility Function 

Consider the indirect utility function defined as follows. 

{ }( , ) max ( ) 0
x

p w u x w p xυ = − ⋅ ≥ . 

The Lagrangean function for this problem can be written as 

( , ; , ) ( ) ( )L x p w u x w p xλ λ≡ + − ⋅ . 

Let  be the solution to this maximization problem and ( , )h p w ( , )p wλ  be the associated 

Lagrange multiplier function. 
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Applying the second derivative formula to wwd υ  yields 

( ) ( )( )2
ww w wd d h d u dυ ′= h  

By the budget condition, we have that 1wp d h⋅ =  and hence [ ] [ ]( )wd h Ker du x p ⊥∉ = .  

Therefore the second-order regularity condition can not be applied to get the negativity of 

wwd υ  if the utility function satisfies merely regular strict quasi-concavity.  Only when the 

utility function is regularly strict concave, i.e.,  is negative definite, we can assert 

that 

2d u( )x

0wwd υ < .  One interesting case to note is when the utility function is homogeneous of 

degree one, then we can show that 0wwd υ = . 

 

4.  Demand Theory with Financial Assets and Multiple Budgets 

In this section, we shall analyze the decision problem of a consumption agent in an 

economy with financial assets and incomplete markets so that the agent will face multiple 

budget constraints.  In this economy, there are two periods, period 0 and period 1.  There 

is no uncertainty in period 0, and the certainty state in period 0 will be denoted by 0s = .  

In period 1, there are  uncertain states denoted by S 1, ,s S= … .  There are  physical 

goods for each state  and 

L

0,1 ,s S…= ( ) Lx s P∈

2

 denotes a consumption vector at state .  

The agent is assumed to have a  utility function  where 

s

C :u X → R X P= A  and 

.  Then the decision problem of the agent is to maximize 

 subject to the following multiple budget constraints: 

( 1L S≡ +A

( ) (u u=x

)

( 0), (1),x x ), )x S… (

(0) (0) (0)p x q wθ⋅ + ⋅ ≤ , and 

( ) ( ) ( ) ( )p s x s w s a s θ⋅ ≤ + ⋅   ( s S1, ,= … ) 

where ( )(0), (1), , ( )x x x≡x … S , ( )x s P∈ A , ( )p s P∈ A  is a vector of spot good prices in 

state ,  denotes the nominal nonfinancial income in state  in an accounting 

unit, 

s ( )w s P∈ s

Jq R∈  is a vector of the prices of financial assets, 1( , , ) J
J Rθ θ θ ′= … ∈  where 
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j Rθ ∈

a a≡

J S≤

 denotes the holding of the j-th financial asset, , and  

indicates a promise of the delivery of the accounting unit when state  occurs for the j-th 

financial asset.  Thus the j-th financial asset can be characterized by its return vector 

.  We will assume the possibility of incomplete markets so that 

.  The  return matrix will be denoted by  

( )1( ) ( ), , ( )Ja s a s a s ′≡ …

s

( )ja s

( (1), , ( )j j ja S ′…

(S J×

[ ]1, , Ja a≡ =

(0), (1),a a

A

0 …

(0)a q≡ −

( (0), (1),b b≡b }0 ≡ ,S S…

( ) ( ) ( )p s x s b s⋅ ≤

{(υ , ) max (
x

p b x

(0) , ,p≡p …

)

)

][ (1), , ( )a a S ′… …  

and we write 

[ ] [, ( ) (0),a S a′ ′]′≡ =A A  

where . 

We will decompose the above decision problem into two sub-problems, the first problem 

on the choice of real consumption vectors, and the second on the choice of financial assets so 

that state incomes can be adjusted among states through the holding of financial assets. 

Let ) 1, ( ) Sb S P +…  be a vector of state incomes and {0,1, .  

Then the first problem is to maximize  subject to the multiple budget constraints as 

follows: 

( )u x

∈

  ( s ) 0S∈

The maximum value function for this problem can be defined by: 

( ) }0) ( ) ( ) ( )u s S p s x s b s= ∀ ∈ ⋅ ≤  

where ( )( )p S ′′ ′  and ( )(0), , ( )b b S ′≡b … . 
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Let .  Then the second problem is to choose ( (0), , ( )w w S ′≡w … ) JRθ ∈  to maximize  

( ) (0, , (0) (0) , , ( ) ( )w a w S a S )υ θ υ θ θ+ = + ⋅ + ⋅p w A p … . 

This is basically a problem of portfolio choice to allocate state incomes through financial 

assets. 

We start out with the analysis of the first problem.  Let the Lagrangean function of the 

first problem be given by: 

( ) (, , , ( ) ( ) ( ) ( ) ( )
s S

)
0

L u s b s p sλ λ
∈

= + − ⋅∑x p b x x s . 

Then the first-order conditions are given as follows: 

( ) ( ) ( ) ( ) 0x sd u s p sλ ′− =x   ( s ) 0S∈

Let the demand function for consumption goods for state  be denoted by  

and 

s ( , )sh p b

[( , ) ( , ) , , ( , )h h h ]0 S
′′≡p b p b p b… ′

)0 ( )S

)0

.  We will be interested in decomposing a price effect 

on demand into the substitution effect and the income effect as in the standard demand 

theory.  The Hicksian approach to income compensation uses the expenditure 

minimization along an indifference surface.  But with the presence of multiple budgets in 

this case, the expenditure to be minimized becomes ambiguous.  But fortunately the 

income compensation scheme by Slutsky poses no problem for this case even with multiple 

budgets and our approach in 3.2 will turn out to be very useful for our problem in this 

section. 

Let us define the Slutskian compensated demand function as follows: 

( ) (0 0, , (0) (0), , ( )G h p x p S x≡ ⋅ ⋅p x p …  

This function can be characterized as a solution to the utility maximization problem with a 

vector of state incomes ( 0(0) (0), , ( ) ( )p x p S x= ⋅ ⋅b … S .  The optimum value function 
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and the associated Lagrangean for this maximization problem is given respectively by: 

( ) ( ){ }0 0
0( , ) max ( ) ( ) ( ) ( )u s S p s x s x sϕ ≡ ∀ ∈ ⋅ −p x x

x
, and 

( )0 0( , ; , ) ( ) ( ) ( ) ( )s
s S

L u p s x sγ γ
∈

≡ + ⋅ −∑x p x x
0

x s

)0

. 

Let  be the associated Lagrange multiplier function.  

We will assume that . 

(0 0
0( , ) ( , ), , ( , )Sγ γ γ≡p x p x p x…

0 0 0( , )G=x p x

By the envelope theorem, the first derivative of ϕ  with respect to ( )p s  is given as 

follows: 

( )0 0 0
( ) ( , ) ( , ) ( ) ( , )p s s sd x sϕ γ 0G ′= −p x p x p x  

By differentiating ( )p sd ϕ  once more with respect to ( )p s′ , we obtain that: 

0 0 0 0 0( , ) ( , ) ( ) ( , ) ( , ) ( , )d d x s G dϕ γ γ′ ′ ′
′ ′   = − −   p x p x p x p x p x0

( ) ( ) ( ) ( )p s p s p s s s s p s sG

)G

0 )

)

)

. 

Evaluating the above at  yields 0p
0 0 0 0 0

( ) ( ) ( )( , ) ( ,p s p s s p s sd dϕ γ′ ′= −p x p x  

where .  Thus 0 0( ,s sγ γ≡ p x
0 0 0 0 0( , ) ( ,d d Gϕ− = Γpp pp x p x  

where  is an  diagonal matrix with blocks 0Γ ( ×A A 0
s LIγ  ( s 0, , S= … ) as follows: 

0
0

0

0

0

0

L L

L L S L

I L

I

γ

γ

×

×

 
 Γ =  
  

"
# % #

"
. 

Thus  becomes a symmetric matrix. 0 0( , )d GΓ p p x0

If we apply the second derivative envelope property to the optimum value function ϕ , 

we can obtain that: 
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( ) ( ) ( ) ( )2d d G d u d G d G dϕ ′ ′ = − Γ pp p p p pG−Γ

)( ) ( ) ( ) ( ) ( )p s p s s p s p s p s

. 

Evaluating at  yields 0p

( ) ( )0 0 0 0 0 0 0 2 0 0 0( , ) ( , ) ( , ) ( ) ( , )d d G d G d u d Gϕ ′  − = Γ =  pp p p pp x p x p x x p x  and 

( ) (0 0 0 0 0 0 0 2 0 0 0( , ) ( , ) ( , ) ( ) ( , )d d G d G d u d Gϕ γ ′  − = =  p x p x p x x p x  

Since the Slutskian compensated demand function  is homogeneous of degree 

zero in each 

0( , )G p x

( )p s  and in , we have that: p
0

( ) ( , ) ( ) 0p sd G p s  = p x A , and 

0( , ) 0d G  = p p x p A . 

As in Section 3.2, if  and 0η
⊥

 ∈ p  0η ≠ A , then 

0 0( , ) 0d G η  ≠ p p x A , and 

if [ ]( )s p sη ⊥∈  and 0s Lη ≠ , then 
0 0

( ) ( , ) 0p s sd G η  ≠ p x A . 

Thus we can conclude that  is negative definite on  and since 

,  is negative definite on 

0 0( , )d GΓ p p x0 0 ⊥
  p

0 0sγ > 0 0
( ) ( , )p sd G p x [ ]( )p s ⊥ .  Differentiating the definition of 

the Slutskian compensated demand function with respect to ( )p s  yields the Slutsky 

equation as follows: 

( )0 0 0 0 0 0 0( , ) ( , ) ( , ) ( )d G d h d h x s( ) ( ) ( )p s p s b s
′′ = +  p x p b p b  

where .  We can summarize these findings as follows: 0 0 0( ) ( ) ( )b s p s x s≡ ⋅
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Proposition 3.  (i) Γ  is symmetric and negative definite on 0 0( , )d Gp p x0 0 ⊥
  p  and 

 is symmetric and negative definite on 0 0
( ) ( , )p sd G p x [ ]( )p s ⊥ , (ii) the following Slutsky 

equation holds 

( )0 0 0 0 0 0 0( , ) ( , ) ( , ) ( )p s p s b sd G d h d h x s( ) ( ) ( )
′′ = +  p x p b p b  

where . 0 0 0( ) ( ) ( )b s p s x s≡ ⋅

 

We now turn to the portfolio choice problem of choosing θ  to maximize the indirect 

utility function ( ) ( )0; , , , 0ψ θ υ≡ +p w A p w A θ  with respect to θ .  By the envelope 

theorem, the first derivatives of the indirect utility function ( ),υ p b  are given as follows: 

( ) ( )( ) , ( ) ,p s sd s hυ λ ′ = −  p b p b , and 

( )( ) , (b sd s)υ λ=p b  

By applying the second derivative envelope property to υ , we can obtain the second 

derivative of υ  with respect to  in a similar fashion as in Section 3.3 to obtain: b

( ) ( ) ( ) ( ) ( ) ( )2, , , , ( )d d d d h d u d hυ υ υ ′ ,  = + −   bb bb bb b bp b p b p b p b x p b 

,

) 0

0

. 

Thus we have that: 

( ) ( ) ( ) ( )2, , ( )d d h d u d hυ ′   =    bb b bp b p b x p b . 

Then 

( ) (0 0; , , ,d dθψ θ υ θ≡ +bp w A p w A A , and 

( ) ( ) ( ) ( ) ( )2
0 0 0 0 0; , , , , ( ) ,d A d d h d u d hθθψ θ υ θ ′′ ′   ≡ + =   bb b bp w A p w A A A p b x p b A  
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where  and ( ,h=x p b) 0θ= +b w A . 

If we differentiate the budget identities ( )( ) , ( )sp s h b s⋅ =p b  with respect to ( )b s′ , we 

can obtain that: 

( )( )( ) ,b s ssp s d h δ′ ′′   = p b  

where 0ssδ ′ =  if  and s s′≠ 1ssδ ′ =  if s s′= .  Thus we have that: 

( ) 1( ) , SB d h I +  = bp p b  

where 

(0) 0 0
0 (1) 0

( )

0 0

p
p

B

( )p S

′ 
 ′ ≡
 
 ′ 

p

"
#

# " % #
"

. 

Using the above relation, we can assert that ( ),d h S  = + b p b 1rank .  Now if 

[ ]0rank J=A , then we have that ( ),rank d h 0 J = b p b A .  Hence for any JRη∈ , 

 implies that ( ) 0,d h b p b A 0η = A 0Jη = , i.e., for any JRη∈ , if 0Jη ≠

[

, then 

.  Therefore if  is negative definite and if ( ) 0,d h b p b A 0η ≠ A
2 ( )d u x ]0 Jrank =A , 

then for any JRη∈ , 0Jη ≠ ,  

( ) ( ) ( ) ( )2
0 0 0; , , , ( ) , 0d d h d u d hθθη ψ θ η η η′′′ ′     = <     b bp w A A p b x p b A , 

i.e.,  is negative definite.  Hence the function ( 0; , ,dθθψ θ p w A ) ψ  is strictly concave in 

θ .  We state this result as a proposition. 

 

Proposition 4.  If the utility function is regularly strict concave, i.e., if  is 

negative definite and if 

2 ( )d u x

[ ]0 Jrank =A , then ( )0; , ,dθθψ θ p w A  is negative definite and  

the function ψ  is regularly strict concave in θ . 

 

Therefore if the condition of this proposition is satisfied, then the portfolio choice 
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problem yields a unique solution denoted by ( )0, ,θ p w A  which is a portfolio demand 

function.  The derivatives of ( )0, ,θ p w A  with respect to p  and w  are given by the 

implicit differentiation rule as follows: 

( ) 1
0d d dθθθ ψ υ− ′= −p bA p , and 

( ) 1
0d d dθθθ ψ υ− ′= −w bA b . 

These properties of the portfolio demand function can be applied in a straightforward 

manner to show the maximal rank condition of a certain mapping in the literature of real 

indeterminacies with financial assets provided that the utility function is regularly strict 

concave.  (For example, the mapping  of Lemma 3 in Geanakopolos and Mas-Colell 

[1989, p.30] and the mapping  in Werner [1990, p.229].) 

g

F

 

5. Conclusion 

In this paper, we have derived a useful second derivative formula of the optimum value 

function which may be regarded as a second derivative envelope property.  First we have 

shown that this formula can be applied fruitfully to various situations of the standard 

demand theory yielding sharper results in a straightforward manner.  Particularly we 

have shown how we can use Slutsky’s method of compensation in obtaining properties of 

the Slutsky matrix.  Secondly we have investigated an approach to demand theory when a 

consumption agent faces multiple budgets and financial assets, particularly in incomplete 

markets.  We have shown that, with the presence of multiple budgets, Slutsky’s method of 

compensation becomes quite useful in establishing properties of substitution effects 

analogous to the standard demand theory.  We have also shown that the second derivative 

envelope property of the optimum value function can be applied nicely in obtaining 

properties of the portfolio demand function arising in general equilibrium with financial 

assets.  We believe that our results will be useful in providing microeconomic properties to 
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various economic models involving optimizing behavior of agents. 
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