(1) ガラス・建装時報 2022 新年特別号

九州産業大学×亀屋硝子

間通じた熱貫流率など測定 「スペーシア」 など6種の窓で実験

ラスを使い、センサーを取り付けてデータを実験。 の研究開発を進めている。2019年から同大学校舎 宅・建築物の窓ガラス面の簡易的な熱貫流率測定方法 ラスは地元卸店の亀屋硝子(福岡県久留米市、 日本板硝子の真空ガラス「スペーシア」など6種の 化の普及促進などにつながると期待される。 ク住宅のZEH おり、さらに精度が高いデータを得られれば、 率などのデータを測定。現在もデータの収集を続けて を使って、 との産学連携という点でも注目される。 た学生が亀屋硝子に入社するなど、 !採用面でのつながりもあり、 香川治美准教授らの研究グループは、 九州産業大学建築都市工学部住居・インテリア学 実際に窓ガラス面の年間を通じての熱貫流 (ネット・ゼロ・エネルギー 研究を支援している。 ガラス流通業者と大学 同大学と亀屋硝子 研究に携わっ ストック 研究には ・ハウス) 堤清 ストッ

最適な窓の組み合わせ探る

性能を高めるには低コスト ストック住宅・建築物の執 現場に適応可能な測定方

で把握するのは難しい。 空き家の 法が必要だが、 -教授らの研究グループはそ た背景から、 熱性能の状況を現場 現場での 存の建

⑤上香川准教授のゼミ生と九産大OBの亀屋硝子の相川●● 氏(後列右端) ①佐藤凌雅さん(左)と香川准教授

るようになることが期待され

わっているようなので、

窓ガラス

の性能も

を調べようとしている」

と話すなど、窓の意匠面で

とが求められており、 間帯によって、ガラス面の温 される場所では、 されたものだが、 熱環境は変化するため、 者などが測定方法を活用でき 消費量の収支をゼロにするこ 日 Н ムメーカ ラス関連業者、 の性能値も変化する。 板ガラスメーカーやフィル の中でも日差しの向きや時 定できるようになること は年間での1次エネルギー ストック住宅のZEH化 の性能値が現場で容易に ーが公表している性 定の条件下で計測 住宅メーカー、 住宅改修業 季節や、一 実際に設置 窓ガラ Z E ガラ

法を開発するための試作 ガラス面 の熱貫流率簡易測定

同

流率は

結果からは、

を測定する熱流計の2種のセ 外気温度と室内温度の差、 性能熱線反射ガラス「レフシ 内温度とガラス表面温度の差 定する熱電対と、 などのデータを計測している。 ンサーを取り付け、 ア」「スペーシアクール」、 単 日本板硝子の 大学8号館 ガラスの表面温度を測 ト板ガラスの6種の窓で ルムを貼付したガラ 遮熱断熱フィルムと 、熱貫流率 熱の流出入 「スペーシ 8 階

グの数値と実際の燃費が変わ している。 なるので、 ない限りはZEH化が難しく タルでどれぐらいなのかを見 からの熱の出入りが年間トー にするというものなので、 窓は熱の出入りが最も大きい どによって数値は変化する。 冬のデータということだが、 次エネルギー消費量をゼロ 香川准教授は研究の目 ZEHは年間トータルで 中でも日差しの向きな 「カタログの性能値は 車の燃費もカタロ 年間を通して計 的に 窓

物

の省エネ化を促進できる

ことで、

ストック住宅・建

を見つける手法を確立

する

一高める最適な窓の組み合わ

などに応じて、

省エネ効果

地や用途、

入居者の滞在

てストック住宅・建築物

を含

能性があるだろう。

用性の確認が必要」と今後の 方との結果の比較と方法の有 している方法のうち、 証が必要。簡易法として提案 い冬季など一年間を通した検 の性能がより発揮される」と 分かる。昼と夜を比較すると、 シングルガラスの2・7倍程 課題を挙げる。 の断熱性能を有することが 「今回の実験は中間期の 『スペーシア』 『スペーシア』関係 内外温度差の大き 年10月4日の実験 「算出された熱貫 関係は もう一 収 0) Þ 0) 集を目指す。コスト面

考察。

気の方が

検証だが、

ということが本来の大きなテ い窓ってどんな窓だろう』 。人にも建物にも環境にも優 香川准教授は フィ 省エネに加えて、 たことをすればリズム ・ンも同じにするのでは 意匠的にも面白 ル ムを貼り分け 「この研 色

2 19

タにしないといけない」と言 測定値が本当に合ってている じてバランスが取れる組み合 ラスにするのではなく、 なるので、 かという指摘を受けること いか。1回計っただけでは、 果が出せると面白いのでは ・組み合わせれば、 ガラスにも得意・ が一番いいのではない ろいろな窓を組み合わせる せがあるはずで、 私が想定している結果は、 より精度が高いデータの りこの測定値というデー 同じ面でも全面同じガ 何年もやって、 年間を そういう 不得意が うま

■実験概要

収録。測定デ

実験対象

可能性も追求する。

香川准教授の「居住環境デ

装飾フィルムの効果研究も

卒業論文の研究テーマとして 「共有空間の雰囲気を変える 4 回生の佐藤凌雅さんは、

ザインゼミナール」に所属す

窓フィルムデザインについて している。 ースに装飾フィルムを貼 調査と分析」について研究 大学校舎の共有ス

Ļ 心地の良さが向上するかどう かを調べる。 フィルムを貼ることで居

け

て、

実際に自分たちで貼

ジャパンシールドの指導を受

ないかと考えた。

実際にフ

施工は同ゼミの3回 ジャパンシールド 装飾 伊藤忠成社長) フ フィ イ 枚ごとに色を ル ムを使 ムはサン (福岡 が供 1生が

実施し、

偏りが出ると思った

ル

ムが好きかアンケートを

も貼っていない方がいいとい

均等に票が集まった。

何

市東区、 変えている。 ゲ オリジナルデザインのフィル 「を使用し、 フィルムは学生が作製した ツの

囲気を変えることが可能だ。

佐藤さんは「学生にどのフ

てデザインを変え、

空間の雰

景だ」と指摘する。

ことができ、

季節などによっ

ると、

貼っていない所は殺

フィル

ムは簡単に剝がす

9

ていないスペースを見比 ルムを貼ったスペースと貼

ロ哲レ州出

T型熱電対

データロガー

6種類の窓

↓ 接続 LAN

面貝 と 性能							日射熱 遮蔽 リフナー にのための			
		光	学的性	能		熱的性能				
	呼び厚さ	可視光			熱貫	日射熱取得率				
	(mm)	透過	反射率(%)		(W/m³•K)	η	S•C	1F某時間		
		率 (%)	OUT	IN	冬	夏	夏			
スペーシア	6.2	75.5	15.9	17.3	1.4	1.4	1.4	30分間/枚、人		
スペーシアクール	6.2	70.0	22.9	20.5	1.0	1.0	1.0	30分間/枚、人		
レフシャイン	6.0	8.0	41.4	36.0	4.6	0.2	0.2	30分間/枚、人		
遮熱断熱フィルム	0.1	73.0	15.0	15.0	4.5	0.6	0.7	15分間/枚、人		
遮熱フィルム	0.1	81.0	11.0	11.0	5.7	0.6	0.7	15分間/枚、人		
シングルガラス	6.0	90.1	8.2	8.2	6.0	0.88	1.0	_		

■実験結果 2019年10月4日

福山秀巍 イン5 デザ ゼミナ

47

筋膜機 デザイン ミナール

12:00~12:10	
ガラスの表面温度(℃)	ガラスの伝熱流量(W/m²)
28	40.0 30.0 30.0 25.0 15.0 15.0 15.0 16.0 17.0 18.0

モニターに表示

6種類の窓ガラスにセンサーを取り付けて、データロガーとパソコンで測定データを 収録。測定データはモニターに表示させ、逐次確認できるようにする

		熱貫流量 (W/㎡・K)		— 室内空気 温度	室内空気温度 - ガラス表面 温度	ガラス表面温度	面空気度温度	外気 温度 (℃)	室内側総合熱伝達率	熱貫流量 (W/m・K)		ガラス の 面積 い	. 熱貫流量 (カタログ値) 冬 (W/㎡・K)		価格 (カタロ: (円/r
ガラスの伝熱流量(W/㎡)				(℃)	(℃)	(℃)	(°C)		(W/m³·K)			(m)	(W/n	1•K)	
途熱フィルム シングルガラス スペーシア スペーシアケール	スペーシア	9.7	36%		-1.7	26.8			4.1	3.3	36%		1.4	23%	90,000
/ / / /	スペーシア クール	10.8	41%		-1.6	26.8			0.3	3.7	41%		1	17%	110,830
MANA	レフシャイン	10.3	39%	2.2	-1.3	26.5	25.2	27.3	0.3	3.5	39%	1.4	4.6	77%	52,000
well may my my will never be with the self the s	遮熱断熱 フィルム	4.7	18%	2.2	-2.4	27.5	25.2	27.5	0.1	1.6	18%		4.5	75%	17,000
A DATA THE THE TANK OF THE PROPERTY OF THE PRO	遮熱フィルム	20.9	78%		-2.1	27.2			0.6	7.0	78%		5.7	95%	18,000
productive of the forest and the production of the first	シングルガラス	26.6	100%		-2.7	27.8			0.7	8.9	100%		6 1	00%	10,000
:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08 12:09 12:10															

23:00~23:10	
ガラスの表面温度(℃)	ガラスの伝熱流量(W/㎡)
5 連絡フィルム Main	-5.0 10.0 15.0
7.4-27 7.4-279-10 U724-12 MILL WARRY	200 スペーンアケール スペーシア 250 スペーシアケール スペーシア
- 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	30.0 \(\bullet \frac{175}{2500} \) 2301 2302 2303 2304 2305 2306 2307 2308 2309 23

		夜(23:00~23:10)													
		i流量 mi•K)	外気温度 一 室内空気 温度 (℃)	室内空気温度 一 ガラス表面 温度 (°C)	ガラス 表面 温度 (℃)	室内 空気 温度 (℃)	外気 温度 (℃)	室内側 総合 熱伝達率 (W/㎡・K)	熱貫流量 (W/㎡・K)		ガラス の 面積 (㎡)	熱貫流量 (カタログ値) 冬 (W/㎡・K)		価格 (カタログ値) (円/㎡)	
スペーシア	18.5	221%		2.2	26.6			6.0	6.2	221%		1.4	23%	90,000	9.0 倍
スペーシア クール	19.8	236%		2.7	22.1			5.3	6.7	236%		1	17%	110,830	11.1 倍
レフシャイン	25.6	306%	-2.6	2.9	21.9	24.8	22.2	6.3	8.6	306%	1.38	4.6	77%	52,900	5.3 倍
遮熱断熱 フィルム	26.0	310%	2.0	3.1	21.7	24.0	22.2	6.1	8.7	310%		4.5	75%	17,000	1.7 倍
遮熱フィルム	6.9	82%		0.3	24.5			19.2	2.3	82%		5.7	95%	18,000	1.8 倍
シングルガラス	8.4	100%		0.6	24.2	.2		10.1	2.8	100%		6	100%	10,000	1.0

ではないか」と語る。

を上げていくことができるの

ってくれば、 だと思った。 人それぞれ、 う人もいて、

大学全体の活気

窓フィルムのデザインについての研究(左)と6種の窓ガラスの実験

りでもそういうことで、 でも居心地を良くできるので セントとして、 紋を入れ、 重だった時代に窓ガラスに家 古い民家で、 久留米市に大正時代からある という発想が出てきたのは、 まであまり注目されていなか 意匠性の効果についてはこれ いろな実験がされているが、 でほとんどされていないとい 取り入れてい ル ムは性能についてはいろ 香川准教授は「ガラスフ こういう研究をしよう かけ。 部屋の一つのアク ガラス自体が貴 わ たのを見たこ 生活空間の中 れわれの周 少し

果についての研究は、 装飾フィルムの心理的な効 これま

という質問もしたが、 ル 簡 るということを知っているか んどだったという。 単に変えられないが、 学生でも知らない人がほと デザ ムなら比較的容易に貼 アンケー インのフィルムが作 トでは、 ガラスは オリジナ 建 フィ り替 築系

授)。 替えは行われている。 替 を使った研究もしている。 あるかもしれない」(香川准教 そういうことで大きな効果が す シ 飾 安時代からふすまの絵を入れ 0 避 いて、 ることは、 ョンやカーテンを替えたり ってみたり、 スの時にサンタクロースを 「えるといった、 一難所などの居心地の良さに ているはず。 香川准教授の研究室では、 脳波を計る機器など 皆さん普通にや 夏と冬でクッ フィルムでも 部屋の模様 クリス

これだけ違うの 今後効果が分か

感性というのは

としても装飾フ IJ め、 ことができる。 わ えることができ、 せて空間の雰囲気を変える スマスなどのイベントに合 た効果に もっとPRする必要が 0 1 フィルム業界 7 季節 ルムのこう 研 究を進 ク

るだろう。