	科目名	*制御工学 I					
講覧室 8211 数室 開席学期 前期	担当教員	中原健志					
現日 時間 水1 単位数 2 2 単位数 2 2 単位数 2 2 単位数 2 2 単位率項	対象学年	3年		クラス	[092]		
理点数 単位数 2 2 2 2 2 2 2 2 2	講義室	8211教室		開講学期	前期		
連携等	曜日・時限	水1		単位区分	必,選択		
語考	授業形態			単位数	2		
制御工学は電気、機械、自動車、航空機などあらゆる産業の基礎学問となっている。機械工学においても自動制御を応用した 機器が発達してきており、その設計や使用において制御工学の基礎知識が要求されている。制御工学を学習するうえで必要 ラブラス変換法と伝達開致について説明し、伝達開数を用いて表現される制御系の応答解析法を解説する。 (達成日標) 伝達開数を用いて数学的に表現されるフィードバック制御系の応答解析ができ、かつ応答特性を理解する 授業時間:22.5時間 回	準備事項						
機能外発達してきており、その設計や使用において制御工学の基礎知識が実実されている。制御工学を学習するうえで必要・ フプラス変換法と伝達開数について説明し、伝達関数を用いて表現される制御系の応答解析法を解説する。 (達成目標) (達成目標) (達成目標) (連入	備考						
制御工学の基礎概念 自動制御の基礎概念と制御系の基本構成を概説する。	A講義概要/Class Outline	(達成目標) 伝達関数を用いて数学的に表現されるフィードバック制御系の応答解析ができ、かつ応答特性を理解する					
自動制御の基礎概念と制御系の基本構成を概説する。 割御工学の基礎教学(1) 複素数とラブラス変換の導入を説明する。 割御工学の基礎教学(3)	B講義計画(テーマ及び学習内容)						
2 複素数とラブラス変換の導入を説明する。		1	制御工学の基礎概念自動制御の基礎概念と制御系の基本構成を概説する。				
3 ラブラス変換の基本的性質を説明する。		2	2 1				
4 部分分数展開による逆ラブラス変換について説明する。 制御工学の基礎数学(4) 線形微分方程式解法へのラブラス変換の適用を例示し概説する。 制御工学の基礎数学に関するまとめ ラブラス変換と逆ラブラス変換について中間試験を実施する。 中間試験の解答解説 中間試験の解答解説 中間試験の答案を返却し模範解答を解説する。 伝達関数とよる制御系の表現 積分要素や一時遅れ要素等の基本要素の伝達関数を具体例を示して説明する。 佐達関数とフィードバック制御(1) ブロック線図の作成手法と基本結合について説明し演習を行う。 位達関数とフィードバック制御(2) ブロック線図の等価変換について説明し演習を行う。 位達関数とフィードバック制御(3) フィードバック制御におけるプロック線図について具体例を通じ説明し演習を行う。 位達関数とフィードバック制御(4) フィードバック制御(4) フィードバック制御(4) フィードバック制御(5) コュードバック制御(6) 12 伝達関数のまとめと小テストを行う。 13 過渡応答法(1) インパルス応答を説明する。 14 過渡応答法(2)		3	3 ラプラス変換の基本的性質を説明する。 4 制御工学の基礎数学(3) 部分分数展開による逆ラプラス変換について説明する。 制御工学の基礎数学(4)				
1		4					
6 ラプラス変換と逆ラプラス変換について中間試験を実施する。		5					
日講義計画(テーマ及び学習内容)		6					
10 日本日本の 11 12 13 14 14 15 15 15 16 16 16 16 16		7					
9 プロック線図の作成手法と基本結合について説明し、演習を行う。 10 伝達関数とフィードバック制御(2) ブロック線図の等価変換について説明し、演習を行う。 11 伝達関数とフィードバック制御(3) フィードバック制御におけるブロック線図について具体例を通じ説明し、演習を行う。 12 伝達関数とフィードバック制御(4) フィードバック制御における伝達関数のまとめと小テストを行う。 13 過渡応答法(1) インパルス応答を説明する。 14 過渡応答法(2)		8					
10 ブロック線図の等価変換について説明し、演習を行う。		9	0 1				
11 フィードバック制御におけるブロック線図について具体例を通じ説明し,演習を行う。 12 伝達関数とフィードバック制御(4) フィードバック制御における伝達関数のまとめと小テストを行う。 13 過渡応答法(1) インパルス応答を説明する。 14 過渡応答法(2)		10)				
12 フィードバック制御における伝達関数のまとめと小テストを行う。 13 過渡応答法(1) インパルス応答を説明する。 14 過渡応答法(2)		11					
13 インパルス応答を説明する。 14 過渡応答法(2)		12					
II 1/4 I		13	3 1 ' '				
		14					
25 全体の総括と復習 各テーマの位置付けを行い全体の講義内容を総括する。		15					

シラバス参照 2/2 ページ

C到達目標/Class Goal	09TM G メカトロニクスシステムの解析と統合に必要な電気電子工学、制御工学に関する基礎を身につける 05TM~08TM (D) 機械工学に必要とされる基本的な数理法則や物理原理に関する理論的知識を習得する				
D準備学習の内容(事前·事後学習)	講義後にノートを読み、自分の手で確実に計算できるようにすること。				
E評価基準GradingCriteria	評点(100点満点)のうち60点以上を合格とし、60点~69点を可(C)、70点~79点を良(B)、80点~89点を優(A)、90点~100点を秀(S)とする。ただし、03TM以前の受講者については80点~100点を優(A)とする。				
F評価方法/Grading Method	レポート(10%)、中間テスト(40%)、期末(50%)				
G受講上の注意/Class Rules	講義中に必ずノートをとること。				
H受講制限/Prerequisit	工学部授業科目履修規程に定める3年次配当科目の履修要件を満たすこと				
I 関連する科目RelatedClass	微積分学、微分方程式、工業数学				
	著者名	小林 伸明 基礎制御工学			
J教科書/Text	出版社名	共立出版			
	ISBN⊐ード	ISBN4-320-02427-3			
	著者名	無し			
	著書名				
K指定図書/Assigned Books	出版社名				
	ISBN⊐ード				
L参考文献/Bibliography	著者名	明石一			
	著書名	制御工学増訂版			
	出版社名	共立出版			
	ISBN⊐ード	ISBN4-320-07983-3			
	著者名	中野道雄 他2名			
	著書名	自動制御			
	出版社名	森北出版			
	ISBN⊐ード	ISBN4-627-60561-7			

▲ 戻る

Copyright (c) 2008 NTT DATA KYUSHU CORPORATION. All Rights Reserved.