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Abstract: This paper proposes a new estimator for the linear feedback model (LFM), which is one

kind of dynamic count data models, in the case of large number of individuals and fixed number of

time  periods.  The  new  estimator  is  a  GMM  estimator,  based  on  two  types  of  the  moment

restrictions generated after decomposing the LFM; those used for estimating the simple standard

dynamic panel data model and those used for estimating the panel data model with multiplicative

fixed effects. Although the new estimator requires (for the consistent estimation) the stationary and

strict-exogenous explanatory variables composed of the fixed effects and the serially independent

disturbances,  a  requisite  and some assumptions  necessary  for  the  PSM estimator  (which is  an

efficient estimator in small samples) are not required. Some Monte Carlo experiments exhibit that

the new estimator performs well in the small samples. 
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1. Introduction
The linear feedback model (LFM) for count panel data proposed by BGW (Blundell, Griffith, and

Windmeijer  2002)  is  an  attractive  model  for  describing  the  dynamic  structure.  The  LFM  can

appropriately take into consideration the dependent  variables with large positive  integer  values

and/or zero values specific to the count data, for the case of incorporating the dynamics into the

count panel data model. For the LFM applied to the panel data set with large number of individuals

and fixed number of time periods, some estimators are proposed and discussed in BGW.1 The level

estimator and the within-group estimator are not consistent estimators and lack of accuracy. The

generalized method of moments (GMM) estimator using the quasi-differencing transformation is

consistent but does not behave well in small samples. Obtaining the consistent pre-sample mean

(PSM) estimator (with its small sample performances being satisfactory) require the prerequisite

that the pre-sample of the dependent variables are available over long histories and the assumptions

that the fixed effects composing the explanatory variables are proportional to the fixed effects in the

LFM and that the moment generating functions of the disturbances (with zero mean) composing the

dependent variables are equal cross-sectionally and inter-temporally and further finite.

The new estimator proposed in this paper is obtained after decomposing the LFM into two

parts: the part analogous to the simple dynamic panel data model and the part where the model is

the  exponential  regression.  That  is,  the  new  estimator  is  a  GMM  estimator  where  the  joint

estimation is conducted using the pertinent moment conditions for each of the two parts. Although

the  new  estimator  requires  for  the  consistent  estimation  the  stationary  and  strict-exogenous

explanatory variables composed of the fixed effects and the serially independent disturbances, it

requires neither the pre-sample nor the assumptions as is needed by the PSM estimator. The weaker

assumption  necessitated  for  the  new estimator  to  be  consistent  is  that  the  moment  generating

functions of the disturbances (with zero mean) composing the dependent variables are equal inter-

temporally.  In  addition,  it  is  seen  from some  Monte  Carlo  experiments  that  the  small  sample

performances of the new estimator are considerably better than those of  the GMM estimator based

only on the framework of the quasi-differencing transformation.

The rest of the paper is organized as follows. In section 2, the estimators existing for the LFM

are introduced and then the new estimator is proposed. In section 3, the Monte Carlo experiments

are carried out for these estimators. Section 4 concludes.

1 Empirical applications using the LFM and the estimators for the LFM are conducted mainly on the relationship
between patents and R&D. For example, some recent papers are Abdelmoula and Bresson (2005), Bosch et al.
(2005), and Uchida and Cook (2005).
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2. Model and estimators
In this section, some discussions are conducted by using a simple illustration of the LFM for count

panel data. Firstly, the assumptions on the LFM are stated, which is required through this paper.

Next, the estimators for the LFM developed until now are examined. Finally, the new estimator for

the LFM is proposed.

2.1. Model and assumptions

A simple LFM for panel data (with i=1, ,N ) is written as

yit= yi ,t
1exp xit ivit , for t=2, ,T , (1)

where  yit is  the  number  of  counts  for  individual  i at  time  t ,  xit  is  an  explanatory

variable  (or  an  input  giving  birth  to  the  counts)  for  individual  i  at  time  t ,  i is  the

individual specific effect for individual i , vit is the disturbance for individual i  at time t

, and  and  are the parameters of interest.

The supposition in this paper is that the explanatory variable xit  is written as 

xit= iwit , for t=1, , T , (2)

where  E [wit ]=0 ,  i  and  wit are mutually independent,  wit  and  wis  are mutually

independent with  t≠s ,  wit  and  i  are mutually independent, and  wit  and  yi1  are

mutually  independent.  Further,  it  is  assumed  that  the  relationship  holds  for  (1)  that

E [vit ∣ yi1 ,i ,wi
T ,i , vi

t
1]=0  with  wi
T=wi1 , , wiT   and  vi

t
1=vi1 , , vi , t
1 .  These

assumptions imply that the explanatory variable xit is the stationary and strict exogenous variable

composed of the fixed effect and the serially independent disturbance.

2.2. Level estimator

The level  estimator  for   and    using the  auxiliary parameter  0  solves  the  moment

conditions

∑i=1

N ∑t=2

T
zit [ yit
 yi , t
1
exp 0 xit ]=0 , (3)

where  the vector  zit=[1 yi ,t
1 xit ] ' . This estimator is inconsistent even when N ∞ and

T ∞ , due to the ignorance of the individual effect i .

2.3. Within group estimator

The within group (WG) estimator for  and   solves the moment conditions
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∑i=1

N ∑t=2

T
zit [ yit
 yi , t
1
yi
 yi ,
1 f it / f i]=0 , (4)

where  zit=[ yi , t
1 xit ]' ,  yi=1/T
1∑t=2

T
yit ,  yi ,
1=1 /T
1∑t=2

T
yi ,t
1 ,

f it=exp  xit  ,  and  f i=1/T
1∑i=2

T
f it .  This  estimator  for  the  LFM is  proposed by

BGW (2002),  which may be said to be a count panel data version of the least  square dummy

variable (LSDV) estimator.  For the reason similar to the case of the LSDV estimator,  the  WG

estimator for the LFM is inconsistent when  N ∞ and  T  is fixed, although it is consistent

when N ∞ and T ∞ .2

2.4. Pre-sample mean estimator

When the fixed effect in the explanatory variable is proportional to the fixed effect in the regression

(i.e.  i= i  with   being  constant)  and  wit  (satisfying  the  conditions  mentioned  in

subsection 2.1) has a finite moment generating function for all i and t , the fixed effect i

is  a  linear  function  of  the  pre-sample  mean  of  the  dependent  variable  yit (i.e.

i=0
∗ log  yip , where  0

∗  and   are constant, and yip=1 /TP ∑r=0

TP
1
yi , 0
r  with

the pre-sample period  TP ∞ ). When the pre-sample variables of the dependent variable are

available for long-run period, the pre-sample mean (PSM)  estimator  for   and    using the

auxiliary  parameters  0
∗  and    solves  the  moment  conditions  introducing

i=0
∗ log  yip  into (1)

∑i=1

N ∑t=2

N
zit [ yit
 yi , t
1
exp 0

∗ xit log  yip]=0 , (5)

where  the  vector  zit=[1 yi ,t
1 xit log  yip] ' .  The  PSM  estimator  is  consistent  when

N ∞  and TP ∞ . The PSM estimator for the LFM is proposed by BGW (2002).3

2.5. Quasi-type transformed GMM estimator

Chamberlain  (1992)  and  Wooldridge  (1997)  contrive  the  GMM estimator  based  on  the  quasi-

differenced transformation for the panel data model with the multiplicative fixed effect. By using

the GMM estimator based on the quasi-differenced transformation, the parameters   and 

in the LFM (1) with (2) can  be estimated consistently, as is shown in BGW (2002).

2 The within group estimator coincides with the Poisson CMLE (conditional maximum likelihood estimator) used in
Hausman et al. (1984) when =0 .

3 The idea that the usage of the pre-sample histories can approximate the fixed effect originates from Blundell et al.
(1995). In addition, the PSM estimator is discussed in Blundell et al. (1999) for the count panel data model without
dynamics.
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The quasi-differenced transformation of (1) is written as

qit=uit  f i ,t
1/ f it 
ui , t
1 , for t=3, , T , (6)

where uit= yit
 yi ,t
1 and f it=exp  xit  .  For the quasi-differenced transformation (6), the

conditional moment conditions hold under the assumptions in subsection 2.1:

E [qit ∣ yi
t
2 , xi

T ]=0 , for t=3, , T , (7)

where  yi
t
2= yi1 , yi2 , , yi , t
2 and  xi

T=xi1 , xi2 , , xiT  .4 Then,  from  the  conditional

moment conditions (7), the following unconditional moment conditions can be obtained:

E [ yisqit ]=0 , for t=3, , T and s=1, , t
2 , (8)

and

E [ xi ,t
1 qit ]=0 and E [ xitqit ]=0 , for t=3, , T . (9)

Further, in this paper, the so-called quasi-level transformation is used from the viewpoint that

the explanatory variables are mean-stationary.  The quasi-level transformation of  the LFM  (1) is

written as

qit=uit / f it , for t=2, ,T , (10)

where  uit and f it  are  the same as  those in the quasi-differenced transformation  (6).  For the

quasi-level transformation (10), the conditional moment  conditions hold under the assumptions in

subsection 2.1:

E [qit
gi ∣  xi
T ]=0 , for t=2, ,T , (11)

where  gi=expi  and   xi
T= xi2 , xi3 , , xiT  .5 Then, from  the conditional moment

conditions (11), the following unconditional moment conditions can be obtained: 

E [qit  xit ]=0 , for t=2, ,T , (12)

where  the  assumptions  on  the  LFM  (1)  with  (2)  in  subsection  2.1  and  the  relationship

E [ gi  xit ]=0  derived from the assumptions are used.6

Finally,  the  quasi-type  transformed  GMM  (QGMM)  estimator  for  the  parameter  vector

=[ ] '  constructed  by  using  the  moment  conditions  (8),  (9),  and  (12)  is  obtained  by

minimizing the following criterion with respect to  :

1/N ∑i=1

N
i
Q ' ZiQW N

Q 1/N ∑i=1

N
Z i
Q ' iQ , (13)

where  the  column  vector  i
Q=[qi ' qi ' ] ' with  qi=[ qi3 qi4 ⋯  qiT ] '  being  a

T
2  element  column  vector  and  qi=[qi2 qi3 ⋯ qiT ]'  being  a  T
1  element

4 Note that qit=uit  f i ,t
1/ f it 
ui , t
1=vit  f i , t
1/ f it
vi , t
1 .
5 Note that E [qit ∣  xi

T ]=E [uit / f it ∣  xi
T ]=E [ givit / f it  ∣  xi

T ] .
6 Note that E [ gi  xit ]=E [ gi wit ]=0  from the assumptions on the LFM (1) with (2) in subsection 2.1.

5



column vector, the matrix

Zi
Q=[Ai Bi O

O O Ci]
with

Ai=[ yi1 0 0 ⋯ 0 0 0 0
0 yi1 yi2 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ yi1 yi2 ⋯ yi ,T
2

]
being a T
2  by T
2T
1/2  matrix,

Bi=[ xi2 xi3 0 0 ⋯ 0 0
0 0 xi3 xi4 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ xi , T
1 xiT

]
being a T
2  by 2 T
2  matrix,

Ci=[ xi2 0 ⋯ 0
0  xi3 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯  xiT

]
being  a   T
1  by  T
1  diagonal  matrix,  and  O  being  the  zero  matrix,  and  the

weighting matrix

W N
Q=1 /N ∑i=1

N
Z i
Q ' iQ  1 i

Q  1' Z iQ

1

with i
Q 1  being the vector i

Q  realized by incorporating an initial consistent estimate 1

for  .7 The QGMM estimator is a consistent estimator for N ∞ , and is constructed in the

framework of the GMM estimator based on the quasi-differenced transformation.

2.6. Decomposed GMM estimator

Equation (1) is rewritten as the following set of two equations, by using equation (2):

yit= yi ,t
1uit , for t=2, ,T , (14)

and

uit=iitvit , for t=2, ,T , (15)

where i=exp  ii and i=exp wi . It can be recognized that the form (14) with (15)

7 In this paper, the initial consistent estimate 1  is obtained by minimizing (13)  with respect to  , after

incorporating W N
Q=1 /N ∑i=1

N
Z i
Q ' ZiQ


1
 into (13).
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is analogous to the form for a simple standard dynamic panel data model presented in Arellano and

Bond (1991). Under the assumptions on equations (1) and (2) in subsection 2.1 and the assumption

that the moment generating function of wit  (i.e. i=exp wi ) is equal for all t , the the

following relationships among yi1  and uit  (for t=2, ,T ) hold for any i :

E [ yi1uit ]=i , for t=2, ,T , (16)

and

E [uit uis ]=i , for t≠s  and s , t=2, , T , (17)

where i=ii  and i=i
2i

2  with i=E [ yi1i ]  and i=E [it ] . Accordingly, from

the relationships (16) and (17), the following moment conditions based on the covariances of yi1

and uit  (for t=2, ,T )  are obtained for estimating   consistently: 

E [ yisuit ]=0 , for t=3, , T and s=1, , t
2 , (18)

and

E [uitui ,t
1]=0 , for t=4, ,T . (19)

The derivation process of the moment conditions (18) and (19) is the same as that described in Ahn

(1990) and Ahn and Schmidt (1995), and  therefore  the moment  conditions (18) and (19) are the

same moment conditions as the standard moment conditions proposed by Holtz-Eakin et al. (1988)

and Arellano and Bond (1991) and the additional non-linear moment conditions proposed by Ahn

and Schmidt (1995) respectively.8

In  addition,  it  is  seen  from  subsection  2.5  that  since  equation  (15)  is  nothing  but

uit=exp  xitivit , the moment conditions (9) and (12) are also valid especially with respect

to estimating   consistently.

In practice, in this paper, the joint estimation using the moment conditions (18), (19), (9), and

(12) is conducted to estimate   and   consistently. That is, the decomposed GMM (DGMM)

estimator for the parameter vector =[ ] '  is obtained by minimizing the following criterion

with respect to 

1/N ∑i=1

N
i
D ' Z iDWN

D 1 /N ∑i=1

N
Z i
D' iD , (20)

where the column vector i
D=[ui ' ni '  qi ' qi ' ] '  with ni=[ni4 ni5 ⋯ niT ]'  being a

T
3  element  column  vector  after  defining  nit=uitui ,t
1  for  t=4, ,T  and  the

remaining column vectors being the same as those in subsection 2.5, the matrix

8 See also Blundell and Bond (1998).
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Zi
D=[Ai O O O

O I O O
O O Bi O
O O O Ci

]
with I being the T
3  by T
3  identity matrix and the remaining matrices being the

same as those in subsection 2.5, and the weighting matrix

W N
D=1 /N ∑i=1

N
Z i
D ' iD 1 i

D  1' ZiD

1

,

with i
D  1  being the vector i

D  realized by incorporating an initial consistent estimate 1

for  .9 The DGMM estimator is a consistent estimator for N ∞ , and is constructed using

two types of the moment conditions corresponding to the simple dynamic panel data model and the

quasi-type transformation. On the DGMM estimator, it is considered that the usage of the moment

conditions (18) and (19) can achieve a good small sample performance of the estimator for the

AR(1) parameter    at least, taking into account the good performance in the small sample for

the simple dynamic panel data model.10 Further, as is required for the PSM estimator, the DGMM

estimator require (for the consistent estimation) neither the pre-sample of the dependent variables

with long histories, nor the assumption that the fixed effect  i  in the explanatory variable is

proportional to the fixed effect  i  in the regression, nor the assumption that the disturbance

wit  in the explanatory variable has a finite moment generating function for all i and t . The

assumption  required  in  order  to  obtain  the  consistent  DGMM  estimator  is  that  the  moment

generating function of wit  is equal for all t . Accordingly, under the weaker restrictions than

in the PSM estimator, the DGMM estimator is consistent, given the assumptions in subsection 2.1.

9 In this paper, the initial consistent estimate 1  is obtained by minimizing (20)  with respect to  , after

incorporating W N
D=1 /N ∑i=1

N
Z i
D ' Z iD


1
 into (20).

10 For example, see Kitazawa (2001).
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3. Monte Carlo experiments
In order to investigate the performance of the DGMM estimator and to compare its performance

with that of the other estimators, Monte Carlo experiments are conducted for some settings of the

LFM. Through the settings, the explanatory variable is set to be the stationary and strict exogenous,

composed of the fixed effect and the serially independent disturbance. The experiments are carried

out for both cases that the fixed effect in the explanatory variable is proportional to the fixed effect

in the LFM and that the fixed effect in the explanatory variable is correlated with the fixed effect in

the LFM but is not proportional to the fixed effect in the LFM.

3.1. Data generating process

The data generating process (DGP) used is

yit~Poisson yi ,t
1exp xiti ,

yi ,
TG1~Poissonexp  xi ,
TG1i ,

xit=iiwit ,

i~N 0,
2 ; i~N 0,

2  ; wit~N 0,w
2  ,

where t=
TG1, ,1, , T  with  TG  being the number of the periods of the pre-sample to

be generated . Although in the DGP the distinct parameter settings of   (i.e. =0  And =1

) are conducted corresponding to the both cases above, the settings of the remaining parameters (i.e.

=0.5 ,  =0.5 ,  =0.2 ,  
2=0.5 ,  

2=0.5 , and  w
2 =2/3 ) are common to the

both cases. For these settings of the parameters, the experiments are carried out for  N=100  ,

500 , and 1000  and T=4  and T=8 , after generating the pre-sample with TG=50 .

The number of the Monte Carlo replications is 1000 . Results for the experiments are described

as follows.11

3.2. Results for the case of =0

In this case, the fixed effect in the explanatory variable is proportional to the fixed effect in the

LFM, where the PSM (using the pre-sample with long histories), QGMM, and DGMM estimators

are consistent for N ∞ . The results for the experiments are shown in Table 1 and 2. The upper

and lower biases are found in the results for the inconsistent Level and WG estimators respectively.

The sizes of the bias and the rmse (root mean squared error) for these estimators are considerable

and do not become smaller with larger N . It is considered that these are endemic to the Level

and  WG  estimates.  The  PSM  estimators  using  the  long  pre-sample  histories  (i.e.  those  with
11 The experiments are implemented with an econometric software TSP 4.5.
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TP=25 and  TP=50 ) behave well even in the case of the smaller cross-sectional size (i.e.

N=100 ). For the smaller  N , the QGMM estimates are biased downwards and the size of

their bias and rmse are large, but these decrease with N  increasing, reflecting  the property of the

consistent  estimator.  Finally,  the  bias  sizes  of  the  DGMM  estimates  are  considerably  small

compared with those of  the QGMM estimates for all N , and are a match for those of the PSM

estimates using long pre-sample histories even when  N=100 . Although the rmse sizes of the

DGMM estimates are not almost different from those of the QGMM estimates for the same N

when T=4 however, the former is considerably smaller than the latter when T=8 . The small

sample performance of the DGMM estimator is preferable especially when T=8 .12

3.3. Results for the case of  =1

In this case, the fixed effect in the explanatory variable is correlated with the fixed effect in the

LFM but is not proportional to the fixed effect in the LFM, where for N ∞  the QGMM and

DGMM estimators are consistent, while the PSM estimators are inconsistent even if using the long

pre-sample histories. The results for the experiments are shown in Table 3 and 4. As is similar to

the case of =0 , the inaccuracies endemic to using the inconsistent estimators are found in the

results using the Level and WG estimators. Different from the case of =0 , the bias and rmse

sizes of the PSM estimates are not small even when using the long pre-sample histories, for all

N and  T .  Contrary  to  the  results  for  these  inconsistent  estimators,  the  accuracies  of  the

consistent QGMM and DGMM estimates improve with N  increasing, as is similar to the case of

=0 . Further, as is similar to the case of  =0 , the bias sizes of the DGMM estimates are

much smaller than those of the QGMM estimates, and for T=8  the rmse sizes are considerably

smaller than those of the QGMM estimates.

12 The results of the Monte Carlo experiments for the Level, WG, PSM, QGMM estimators are considerably similar to
those in BGW (2002).
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5. Conclusion
This paper has proposed the DGMM estimator applicable to the LFM for count panel data. The

DGMM estimator requires the stationary and strict exogenous explanatory variables  composed of

the  fixed  effects  and  the  serially  independent  disturbances,  but  (as  is  required  for  the  PSM

estimator)  requires  neither  the  long  pre-sample  histories  of  the  dependent  variables,  nor  the

assumption that the fixed effects in the dependent variables are proportional to the fixed effects in

the LFM, nor the assumption that the moment generating functions of the disturbances (with zero

mean) in explanatory variables are finite and equal among individuals and over time. That is, for the

LFM with the explanatory variables composed of the fixed effects and the serially independent

disturbances, the DGMM estimator is consistent under the assumptions that the fixed effects in the

dependent  variables  are  not  proportional  to  the  fixed effects  in  the  LFM and that  the  moment

generating functions of the disturbances (with their mean zero) in explanatory variables are equal

over time without the moment generating functions being equal among individuals and being finite.

Some Monte Carlo experiments show that the small sample performances of the DGMM estimator

are fairly favorable, superior to the QGMM estimator, and a match for those of the consistent PSM

estimator.

11



References
Abdelmoula, M., and G. Bresson, 2005, Patents and R&D spillovers in some European regions: a

dynamic count panel data model, Working paper 05-07, ERMES (CNRS), Université Paris II

Ahn, S.C., 1990, Three essays on share contracts, labor supply, and the estimation of models for

dynamic panel data, Unpublished Ph.D. Dissertation (Michigan State University, East Lansing, MI)

Ahn, S.C., and P. Schmidt, 1995, Efficient estimation of models for dynamic panel data, Journal

of Econometrics, 68, 5-28

Arellano, M., and S. Bond, 1991, Some tests of specification for panel data: Monte Carlo evidence

and an application to employment equations, Review of Economic Studies, 58, 277-298

Blundell, R., and S. Bond, 1998, Initial conditions and moment restrictions in dynamic panel data

models, Journal of Econometrics, 87, 115-144

Blundell, R., Griffith., and J. van Reenen, 1995, Dynamic count data models of technological

innovation, Economic Journal, 105, 333-344

Blundell, R., Griffith, R., and J. van Reenen, 1999, Market share, market value and innovation in

a panel of British manufacturing firms, Review of Economic Studies, 66, 529-554

Blundell, R., Griffith, R., and F. Windmeijer, 2002, Individual effect and dynamics in count data

models, Journal of Econometrics, 108, 113-131

Bosch, M., Lederman, D., and W.F. Maloney, 2005, Patenting and research and development: a

global view, Policy research working paper 3739, The World Bank

Chamberlain,  G.,  1992, Comment:  sequential  moment  restrictions  in  panel  data,  Journal  of

Business and Economic Statistics, 10, 20-26

Hausman,  J.,  Hall,  B.,  and  G.  Griliches, 1984,  Econometric  models  for  count  data  and  an

application to patent-R&D relationship, Econometrica, 52, 909-938

12



Holtz-Eakin, D., Newey, W., and H. Rosen, 1988, Estimating vector autoregressions with panel

data, Econometrica, 56, 1371-1395

Kitazawa, Y., 2001, Exponential regression of dynamic panel data models, Economics Letters, 73,

7-13

Uchida, Y., and P. Cook, 2005, Innovation and market structure in the manufacturing sector: an

application of linear feedback models, Center on regulation and competition working paper series

paper no. 120, Institute for developing policy and management, University of Manchester

Wooldridge, J., 1997, Multiplicative panel data models without the strict exogeneity assumption,

Econometric Theory, 13, 667-678

13



Table 1.

Monte Carlo results for the LFM, with T=4

=0.5 ; =0.5 ; =0.2 ; 
2=0.5 ; =0 ; 

2=0.5 ; w
2 =2/3

N=100 N=500 N=1000

bias rmse bias rmse bias rmse

Level   0.255 0.262  0.269 0.271  0.272 0.273
   0.738 0.869  0.736 0.764  0.732 0.745

WG  -0.450 0.462 -0.446 0.449 -0.444 0.445
 -0.285 0.293 -0.290 0.291 -0.290 0.290

PSM 4   0.131 0.156  0.149 0.154  0.153 0.156
 4   0.265 0.365  0.272 0.292  0.275 0.286
8   0.100 0.124  0.116 0.122  0.121 0.124
8   0.185 0.267  0.191 0.209  0.196 0.206
25   0.041 0.085  0.056 0.066  0.059 0.065
 25   0.076 0.158  0.079 0.101  0.082 0.094
50   0.016 0.076  0.030 0.047  0.033 0.043
50   0.039 0.133  0.041 0.071  0.044 0.060

QGMM  -0.133 0.218 -0.070 0.106 -0.047 0.079
 -0.124 0.194 -0.076 0.123 -0.055 0.103

DGMM  -0.050 0.192 -0.032 0.092 -0.014 0.067 
 -0.072 0.200 -0.032 0.119 -0.005 0.112

Notes: Level is the level estimator, WG is the within group estimator, PSM is the pre-sample mean
estimator where the number of the last pre-sample periods used for the estimation is described in the
parentheses next to   and  , QGMM is the quasi-type GMM estimator, and DGMM is the
decomposed  GMM  estimator.  The  Monte  Carlo  results  are  almost  invariant  to  some  different
starting values in the optimizations implementing for these estimators.
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Table 2.
Monte Carlo results for the LFM, with T=8

=0.5 ; =0.5 ; =0.2 ; 
2=0.5 ; =0 ; 

2=0.5 ; w
2 =2/3

N=100 N=500 N=1000

bias rmse bias rmse bias rmse

Level   0.258 0.262  0.272 0.273  0.272 0.273
  0.704 0.757  0.735 0.749  0.734 0.743

WG  -0.190 0.198 -0.189 0.190 -0.190 0.191
 -0.154 0.164 -0.157 0.159 -0.158 0.159

PSM 4  0.139 0.148  0.155 0.158  0.156 0.158
 4  0.254 0.292  0.276 0.285  0.277 0.285
8  0.108 0.120  0.124 0.127  0.125 0.126
8  0.181 0.217  0.198 0.207  0.200 0.206
25  0.050 0.071  0.062 0.067  0.063 0.066
 25  0.075 0.117  0.085 0.096  0.085 0.092
50  0.025 0.056  0.035 0.043  0.036 0.040
50  0.038 0.090  0.046 0.060  0.046 0.054

QGMM  -0.196 0.215 -0.091 0.099 -0.060 0.067
 -0.208 0.217 -0.118 0.125 -0.084 0.091

DGMM   0.025 0.128 -0.004 0.045 -0.004 0.028 
 -0.059 0.131 -0.024 0.071 -0.017 0.046

Notes: Level is the level estimator, WG is the within group estimator, PSM is the pre-sample mean
estimator where the number of the last pre-sample periods used for the estimation is described in the
parentheses next to   and  , QGMM is the quasi-type GMM estimator, and DGMM is the
decomposed  GMM  estimator.  The  Monte  Carlo  results  are  almost  invariant  to  some  different
starting values in the optimizations implementing for these estimators.
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Table 3.
Monte Carlo results for the LFM, with T=4

=0.5 ; =0.5 ; =0.2 ; 
2=0.5 ; =1 ; 

2=0.5 ; w
2 =2/3

N=100 N=500 N=1000

bias rmse bias rmse bias rmse

Level   0.253 0.261  0.271 0.274  0.272 0.273
  0.422 0.541  0.439 0.473  0.428 0.440

WG  -0.430 0.443 -0.430 0.433 -0.429 0.431
 -0.280 0.288 -0.283 0.285 -0.284 0.284

PSM 4  0.130 0.157  0.152 0.159  0.154 0.158
 4  0.059 0.212  0.065 0.130  0.062 0.093
8  0.101 0.134  0.120 0.129  0.121 0.127
8 -0.005 0.162 -0.004 0.084 -0.005 0.057
25  0.044 0.103  0.059 0.075  0.060 0.070  
 25 -0.094 0.167 -0.098 0.114 -0.099 0.108
50  0.020 0.095  0.032 0.059  0.033 0.050
50 -0.125 0.174 -0.129 0.144 -0.131 0.136

QGMM  -0.142 0.235 -0.081 0.119 -0.053 0.081
 -0.138 0.198 -0.086 0.130 -0.061 0.100

DGMM  -0.035 0.217 -0.032 0.124 -0.020 0.070 
 -0.096 0.210 -0.037 0.151 -0.015 0.108

Notes: Level is the level estimator, WG is the within group estimator, PSM is the pre-sample mean
estimator where the number of the last pre-sample periods used for the estimation is described in the
parentheses next to   and  , QGMM is the quasi-type GMM estimator, and DGMM is the
decomposed  GMM  estimator.  The  Monte  Carlo  results  are  almost  invariant  to  some  different
starting values in the optimizations implementing for these estimators.
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Table 4.
Monte Carlo results for the LFM, with T=8

=0.5 ; =0.5 ; =0.2 ; 
2=0.5 ; =1 ; 

2=0.5 ; w
2 =2/3

N=100 N=500 N=1000

bias rmse bias rmse bias rmse

Level    0.256 0.261  0.271 0.272  0.272 0.272
  0.410 0.458  0.428 0.440  0.425 0.432

WG  -0.185 0.194 -0.181 0.183 -0.181 0.183
 -0.152 0.162 -0.151 0.153 -0.152 0.154

PSM 4  0.135 0.148  0.153 0.157  0.155 0.157
 4  0.044 0.129  0.056 0.084  0.054 0.072
8  0.106 0.123  0.122 0.128  0.124 0.127
8 -0.014 0.107 -0.006 0.054 -0.006 0.040
25  0.051 0.081  0.062 0.072  0.064 0.069
 25 -0.098 0.127 -0.097 0.105 -0.097 0.102
50  0.027 0.069  0.035 0.051  0.037 0.046
50 -0.128 0.148 -0.129 0.134 -0.129 0.132

QGMM  -0.209 0.228 -0.095 0.103 -0.063 0.070
 -0.214 0.223 -0.120 0.127 -0.087 0.094

DGMM   0.053 0.169  0.009 0.054  0.005 0.038
 -0.072 0.152 -0.010 0.071 -0.007 0.055

Notes: Level is the level estimator, WG is the within group estimator, PSM is the pre-sample mean
estimator where the number of the last pre-sample periods used for the estimation is described in the
parentheses next to   and  , QGMM is the quasi-type GMM estimator, and DGMM is the
decomposed  GMM  estimator.  The  Monte  Carlo  results  are  almost  invariant  to  some  different
starting values in the optimizations implementing for these estimators.
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